
1 Reductions

1.1 Introduction

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the
second problem can be used to solve the first problem. We say the first problem reduces to the
second problem.

• Informal Examples: Measuring the area of rectangle reduces to measuring the length of the
sides; Solving a system of linear equations reduces to inverting a matrix

• The problem Ld reduces to the problem Atm as follows: “To see if 〈M〉 ∈ Ld check if
〈M, 〈M〉〉 ∈ Atm.”

Undecidability using Reductions

Proposition 1. Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is undecidable.

Proof Sketch.
Suppose for contradiction L2 is decidable. Then there is a M that always halts and decides L2.
Then the following algorithm decides L1

• On input w, apply reduction to transform w into an input w′ for problem 2

• Run M on w′, and use its answer.

This can be seen Pictorially as follows.

Algorithm for Problem 1

Reduction f
Algorithm
for Prob-

lem 2

w f(w)
yes

no

Figure 1: Reductions schematically

The Halting Problem

Proposition 2. The language HALT = {〈M,w〉 |M halts on input w} is undecidable.

1



Proof. We will reduce Atm to HALT. Based on a machine M , let us consider a new machine f(M)
as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f(M) halts on input w if and only if M accepts w
Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) =

HALT. Consider the following program T

On input 〈M,w〉
Construct program f(M)
Run H on 〈f(M), w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the contradiction.

1.2 Definitions and Observations

Mapping Reductions

Definition 3. A function f : Σ∗ → Σ∗ is computable if there is some Turing Machine M that on
every input w halts with f(w) on the tape.

Definition 4. A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to
a language B is a computable function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f(w) ∈ B

In this case, we say A is reducible to B, and we denote it by A ≤m B.

Convention
In this course, we will drop the adjective “mapping” or “many-one”, and simply talk about reduc-
tions and reducibility.

Reductions and Recursive Enumerability

Proposition 5. If A ≤m B and B is r.e., then A is r.e.

Proof. Let f be a reduction from A to B and let MB be a Turing Machine recognizing B. Then
the Turing machine recognizing A is

2



On input w
Compute f(w)
Run MB on f(w)
Accept if MB accepts, and reject if MB rejects

Corollary 6. If A ≤m B and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition 7. If A ≤m B and B is decidable, then A is decidable.

Proof. Let f be a reduction from A to B and let MB be a Turing Machine deciding B. Then a
Turing machine that decides A is

On input w
Compute f(w)
Run MB on f(w)
Accept if MB accepts, and reject if MB rejects

Corollary 8. If A ≤m B and A is undecidable, then B is undecidable.

1.3 Examples

The Halting Problem

Proposition 9. The language HALT = {〈M,w〉 |M halts on input w} is undecidable.

Proof. Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give reduction f to show Atm ≤m

HALT =⇒ HALT undecidable.
Let f(〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w. i.e., 〈M,w〉 ∈ Atm iff f(〈M,w〉) ∈ HALT

Emptiness of Turing Machines

Proposition 10. The language Etm = {〈M〉 | L(M) = ∅} is not r.e.

Proof. Recall Ld = {〈M〉 |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows. Let f(M) = 〈N〉 where N is a TM that behaves as follows:

3



On input x
Run M on 〈M〉
Accept x only if M accepts 〈M〉

Observe that L(N) = ∅ if and only if M does not accept 〈M〉 if and only if 〈M〉 ∈ Ld.

Checking Regularity

Proposition 11. The language REGULAR = {〈M〉 | L(M) is regular} is undecidable.

Proof. We give a reduction f from Atm to REGULAR. Let f(〈M,w〉) = 〈N〉, where N is a TM
that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈
REGULAR if and only if 〈M,w〉 ∈ Atm

Checking Equality

Proposition 12. EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof. We will give a reduction f from Etm to EQtm. Let M1 be the Turing machine that on any
input, halts and rejects i.e., L(M1) = ∅. Take f(M) = 〈M,M1〉.

Observe 〈M〉 ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff 〈M,M1〉 ∈ EQtm.

4


	Reductions
	Introduction
	Definitions and Observations
	Examples


