1 Reductions

1.1 Introduction

Reductions

A *reduction* is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem *reduces* to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix
- The problem L_d reduces to the problem A_{TM} as follows: "To see if $\langle M \rangle \in L_d$ check if $\langle M, \langle M \rangle \rangle \in A_{\text{TM}}$."

Undecidability using Reductions

Proposition 1. Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

- On input w, apply reduction to transform w into an input w' for problem 2
- Run M on w', and use its answer.

This can be seen Pictorially as follows.

Figure 1: Reductions schematically

The Halting Problem

Proposition 2. The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof. We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x  {\rm Run}\ M \ {\rm on}\ x   {\rm If}\ M \ {\rm accepts}\ {\rm then}\ {\rm halt}\ {\rm and}\ {\rm accept}   {\rm If}\ M \ {\rm rejects}\ {\rm then}\ {\rm go}\ {\rm into}\ {\rm an}\ {\rm infinite}\ {\rm loop}
```

Observe that f(M) halts on input w if and only if M accepts w

Suppose HALT is decidable. Then there is a Turing machine H that always halts and $\mathbf{L}(H) = \text{HALT}$. Consider the following program T

```
On input \langle M,w\rangle
Construct program f(M)
Run H on \langle f(M),w\rangle
Accept if H accepts and reject if H rejects

T decides A_{\mathrm{TM}}. But, A_{\mathrm{TM}} is undecidable, which gives us the contradiction.
```

1.2 Definitions and Observations

Mapping Reductions

Definition 3. A function $f: \Sigma^* \to \Sigma^*$ is *computable* if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Definition 4. A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to a language B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

$$w \in A$$
 if and only if $f(w) \in B$

In this case, we say A is reducible to B, and we denote it by $A \leq_m B$.

Convention

In this course, we will drop the adjective "mapping" or "many-one", and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition 5. If $A \leq_m B$ and B is r.e., then A is r.e.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w Compute f(w) Run M_B on f(w) Accept if M_B accepts, and reject if M_B rejects \square
```

Corollary 6. If $A \leq_m B$ and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition 7. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine deciding B. Then a Turing machine that decides A is

```
On input w  \text{Compute } f(w)   \text{Run } M_B \text{ on } f(w)   \text{Accept if } M_B \text{ accepts, and reject if } M_B \text{ rejects } \square
```

Corollary 8. If $A \leq_m B$ and A is undecidable, then B is undecidable.

1.3 Examples

The Halting Problem

Proposition 9. The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof. Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m HALT \implies HALT$ undecidable.

Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows:

On input x

 ${\rm Run}\ M\ {\rm on}\ x$

If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$

Emptiness of Turing Machines

Proposition 10. The language $E_{\text{TM}} = \{ \langle M \rangle \mid \mathbf{L}(M) = \emptyset \}$ is not r.e.

Proof. Recall $L_d = \{ \langle M \rangle \mid M \notin \mathbf{L}(M) \}$ is not r.e.

 L_d is reducible to E_{TM} as follows. Let $f(M) = \langle N \rangle$ where N is a TM that behaves as follows:

```
On input x \operatorname{Run}\ M\ \text{on}\ \langle M\rangle \operatorname{Accept}\ x\ \text{only if}\ M\ \text{accepts}\ \langle M\rangle \operatorname{Observe\ that}\ \mathbf{L}(N)=\emptyset\ \text{if and only if}\ M\ \text{does not accept}\ \langle M\rangle\ \text{if and only if}\ \langle M\rangle\in L_d.
```

Checking Regularity

Proposition 11. The language $REGULAR = \{\langle M \rangle \mid \mathbf{L}(M) \text{ is regular}\}$ is undecidable.

Proof. We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = \langle N \rangle$, where N is a TM that works as follows:

```
On input x \label{eq:continuous} \text{If } x \text{ is of the form } 0^n 1^n \text{ then accept } x \text{else run } M \text{ on } w \text{ and accept } x \text{ only if } M \text{ does}
```

If
$$w \in \mathbf{L}(M)$$
 then $\mathbf{L}(N) = \Sigma^*$. If $w \notin \mathbf{L}(M)$ then $\mathbf{L}(N) = \{0^n 1^n \mid n \geq 0\}$. Thus, $\langle N \rangle \in \text{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\text{TM}}$

Checking Equality

Proposition 12. $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid \mathbf{L}(M_1) = \mathbf{L}(M_2) \}$ is not r.e.

Proof. We will give a reduction f from E_{TM} to EQ_{TM} . Let M_1 be the Turing machine that on any input, halts and rejects i.e., $\mathbf{L}(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$.

Observe
$$\langle M \rangle \in E_{\text{TM}}$$
 iff $\mathbf{L}(M) = \emptyset$ iff $\mathbf{L}(M) = \mathbf{L}(M_1)$ iff $\langle M, M_1 \rangle \in \mathrm{EQ}_{\mathrm{TM}}$.