
1 Closure Properties

1.1 Regular Operations

Union of CFLs

Proposition 1. If L1 and L2 are context-free languages then L1 ∪ L2 is also context-free.

Proof. Let L1 be language recognized by G1 = (V1,Σ, R1, S1) and L2 the language recognized by
G2 = (V2,Σ, R2, S2). Assume that V1 ∩ V2 = ∅; if this assumption is not true, rename the variables
of one of the grammars to make this condition true.

We will construct a grammar G = (V,Σ, R, S) such that L(G) = L(G1) ∪ L(G2) as follows.

• V = V1 ∪ V2 ∪ {S}, where S 6∈ V1 ∪ V2 (and V1 ∩ V2 = ∅)

• R = R1 ∪R2 ∪ {S → S1|S2}

We need to show that L(G) = L(G1) ∪ L(G2). Consider w ∈ L(G). That means there is a

derivation S
∗⇒G w. Since the only rules involving S are S → S1 and S → S2, this derivation

is either of the form S ⇒G S1
∗⇒G w or S ⇒G S2

∗⇒G w. Consider the first case. Since the
only rules for variables in V1 are those belonging to R1 and since S1

∗⇒G w, we have S1
∗⇒G1 w,

and so w ∈ L1 = L(G1). If the derivation S
∗⇒G w is of the form S ⇒G S2

∗⇒G w, then by a
similar reasoning we can conclude that w ∈ L(G2). Hence if w ∈ L(G) then w ∈ L(G1) ∪ L(G2).
Conversely, consider w ∈ L(G1) ∪ L(G2). Suppose w ∈ L(G1); the case that w ∈ L(G2) is similar

and skipped. That means that S1
∗⇒G1 w. Since R1 ⊆ R, we have S1

∗⇒G w. Thus, we have

S ⇒G S1
∗⇒G w which means that w ∈ L(G). This completes the proof.

Concatenation, Kleene Closure

Proposition 2. CFLs are closed under concatenation and Kleene closure

Proof. Let L1 be language generated by G1 = (V1,Σ, R1, S1) and L2 the language generated by
G2 = (V2,Σ, R2, S2). As before we will assume that V1 ∩ V2 = ∅.

Concatenation Let G = (V,Σ, R, S) be such that V = V1 ∪ V2 ∪ {S} (with S 6∈ V1 ∪ V2), and
R = R1 ∪ R2 ∪ {S → S1S2}. We will show that L(G) = L(G1)L(G2). Suppose w ∈ L(G).

Then there is a leftmost derivation S
∗⇒
G

lm w. The form such a derivation is S ⇒G S1S2
∗⇒
G

lm

w1S2
∗⇒
G

lm w1w2 = w. Thus, S1
∗⇒
G

lm w1 and S2
∗⇒
G

lm w2. Since the rules in R restricted to

V1 are R1 and restricted to V2 are R2, we can conclude that S1
∗⇒
G1

lm w1 and S2
∗⇒
G2

lm w2.
Thus, w1 ∈ L(G1) and w2 ∈ L(G2) and therefore, w = w1w2 ∈ L(G1)L(G2). On the other

hand, if w1 ∈ L(G1) and w2 ∈ L(G2) then we have S1
∗⇒G1 w1 and S2

∗⇒G2 w2. Take

w = w1w2 ∈ L(G1)L(G2). Now since R1 ∪ R2 ⊆ R, we have S1
∗⇒G w1 and S2

∗⇒G w2.

Therefore, we have, S ⇒G S1S2
∗⇒G w1S2

∗⇒G w1w2 = w, and so w ∈ L(G).

1

Kleene Closure Let G = (V = V1 ∪ {S},Σ, R = R1 ∪ {S → SS1 | ε}, S), where S 6∈ V1. We will
show that L(G) = (L(G1))∗. We will show if w ∈ L(G) then w ∈ (L(G1))∗ by induction
on the length of the leftmost derivation of w. For the base case, consider w such that
S ⇒G w. Since S → ε is the only rule for S whose right-hand side has terminals, this
means that w = ε. Further, ε ∈ (L(G1))∗ which establishes the base case. The induction

hypothesis assumes that for all strings w, if S
∗⇒
G

lm w in < n steps then w ∈ (L(G1))∗.

Consider w such that S
∗⇒
G

lm w in n steps. Any leftmost derivation has the following form:

S ⇒G SS1
∗⇒
G

lm w1S1
∗⇒
G

lm w1w2 = w. Now we have S
∗⇒
G

lm w1 is < n steps (because

S1
∗⇒
G

lm w2 takes at least one step), and S1
∗⇒
G

lm w2. This means that w1 ∈ (L(G1))∗ (by
induction hypothesis) and w2 ∈ L(G1) (since the only rules in R for variables in V1 are those
belonging to R1). Thus, w = w1w2 ∈ (L(G1))∗. For the converse, suppose w ∈ (L(G1))∗. By
definition, this means that there are w1, w2, . . . wn (for n ≥ 0) such that wi ∈ L(G1) for all
i. Now if n = 0 (i.e., w = ε) then we have S ⇒G w because S → ε is a rule. Otherise, since

wi ∈ L(G1), we have S1
∗⇒G1 wi, for each i. Since R1 ⊆ R, S1

∗⇒G wi. Hence we have the
following derivation

S ⇒G SS1 ⇒G SSS1 ⇒G · · · ⇒G S(S1)n ⇒G (S1)n
∗⇒G w1(S1)n−1 ∗⇒G · · ·

∗⇒G w1w2 · · ·wn = w

1.2 Intersection and Complementation

Intersection

Proposition 3. CFLs are not closed under intersection

Proof. • L1 = {aibicj | i, j ≥ 0} is a CFL

– Generated by a grammar with rules S → XY ; X → aXb|ε; Y → cY |ε.

• L2 = {aibjcj | i, j ≥ 0} is a CFL.

– Generated by a grammar with rules S → XY ; X → aX|ε; Y → bY c|ε.

• But L1 ∩ L2 = {anbncn | n ≥ 0}, which we will see soon, is not a CFL.

Intersection with Regular Languages

Proposition 4. If L is a CFL and R is a regular language then L ∩R is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA
P ′ will simulate P and M simultaneously on the same input and accept if both accept. Then P ′

accepts L ∩R.

2

• The stack of P ′ is the stack of P

• The state of P ′ at any time is the pair (state of P , state of M)

• These determine the transition function of P ′

• The final states of P ′ are those in which both the state of P and state of M are accepting.

More formally, letM = (Q1,Σ, δ1, q1, F1) be a DFA such that L(M) = R, and P = (Q2,Σ,Γ, δ2, q2, F2)
be a PDA such that L(P) = L. Then consider P ′ = (Q,Σ,Γ, δ, q0, F) such that

• Q = Q1 ×Q2

• q0 = (q1, q2)

• F = F1 × F2

δ((p, q), x, a) =

{
{((p, q′), b) | (q′, b) ∈ δ2(q, x, a)} when x = ε
{((p′, q′), b) | p′ = δ1(p, x) and (q′, b) ∈ δ2(q, x, a)} when x 6= ε

One can show by induction on the number of computation steps, that for any w ∈ Σ∗

〈q0, ε〉
w−→P ′ 〈(p, q), σ〉 iff q1

w−→M p and 〈q2, ε〉
w−→P 〈q, σ〉

The proof of this statement is left as an exercise. Now as a consequence, we have w ∈ L(P ′)
iff 〈q0, ε〉

w−→P ′ 〈(p, q), σ〉 such that (p, q) ∈ F (by definition of PDA acceptance) iff 〈q0, ε〉
w−→P ′

〈(p, q), σ〉 such that p ∈ F1 and q ∈ F2 (by definition of F) iff q1
w−→M p and 〈q2, ε〉

w−→P 〈q, σ〉 and
p ∈ F1 and q ∈ F2 (by the statement to be proved as exercise) iff w ∈ L(M) and w ∈ L(P) (by
definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 5. Context-free languages are not closed under complementation.

Proof. [Proof 1] Suppose CFLs were closed under complementation. Then for any two CFLs L1,
L2, we have

• L1 and L2 are CFL. Then, since CFLs closed under union, L1 ∪ L2 is CFL. Then, again by

hypothesis, L1 ∪ L2 is CFL.

• i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction!
[Proof 2] L = {x | x not of the form ww} is a CFL.

• L generated by a grammar with rules X → a|b, A→ a|XAX, B → b|XBX, S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} we will see is not a CFL!

3

Set Difference

Proposition 6. If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of
set difference. (How?)

Proposition 7. If L is a CFL and R is a regular language then L \R is a CFL

Proof. L \R = L ∩R

1.3 Homomorphisms

Homomorphism

Proposition 8. Context free languages are closed under homomorphisms.

Proof. Let G = (V,Σ, R, S) be the grammar generating L, and let h : Σ∗ → Γ∗ be a homomorphism.
A grammar G′ = (V ′,Γ, R′, S′) for generating h(L):

• Include all variables from G (i.e., V ′ ⊇ V), and let S′ = S

• Treat terminals in G as variables. i.e., for every a ∈ Σ

– Add a new variable Xa to V ′

– In each rule of G, if a appears in the RHS, replace it by Xa

• For each Xa, add the rule Xa → h(a)

G′ generates h(L). (Exercise!)

Example 9. Let G have the rules S → 0S0|1S1|ε.
Consider the homorphism h : {0, 1}∗ → {a, b}∗ given by h(0) = aba and h(1) = bb.
Rules of G′ s.t. L(G′) = L(L(G)):

S → X0SX0|X1SX1|ε
X0 → aba

X1 → bb

4

1.4 Inverse Homomorphisms

Inverse Homomorphisms

Recall: For a homomorphism h, h−1(L) = {w | h(w) ∈ L}

Proposition 10. If L is a CFL then h−1(L) is a CFL

Proof Idea
For regular language L: the DFA for h−1(L) on reading a symbol a, simulated the DFA for L on
h(a). Can we do the same with PDAs?

• Key idea: store h(a) in a “buffer” and process symbols from h(a) one at a time (according
to the transition function of the original PDA), and the next input symbol is processed only
after the “buffer” has been emptied.

• Where to store this “buffer”? In the state of the new PDA!

Proof. Let P = (Q,∆,Γ, δ, q0, F) be a PDA such that L(P) = L. Let h : Σ∗ → ∆∗ be a homomor-
phism such that n = maxa∈Σ |h(a)|, i.e., every symbol of Σ is mapped to a string under h of length
at most n. Consider the PDA P ′ = (Q′,Σ,Γ, δ′, q′0, F

′) where

• Q′ = Q×∆≤n, where ∆≤n is the collection of all strings of length at most n over ∆.

• q′0 = (q0, ε)

• F ′ = F × {ε}

• δ′ is given by

δ′((q, v), x, a) =

{
{((q, h(x)), ε)} if v = a = ε

{((p, u), b) | (p, b) ∈ δ(q, y, a)} if v = yu, x = ε, and y ∈ (∆ ∪ {ε})

and δ′(·) = ∅ in all other cases.

We can show by induction that for every w ∈ Σ∗

〈q′0, ε〉
w−→P ′ 〈(q, v), σ〉 iff 〈q0, ε〉

w′
−→P 〈q, σ〉

where h(w) = w′v. Again this induction proof is left as an exercise. Now, w ∈ L(P ′) iff 〈q′0, ε〉
w−→P ′

〈(q, ε), σ〉 where q ∈ F (by definition of PDA acceptance and F ′) iff 〈q0, ε〉
h(w)−→P 〈q, σ〉 (by exercise)

iff h(w) ∈ L(P) (by definition of PDA acceptance). Thus, L(P ′) = h−1(L(P)) = h−1(L).

5

	Closure Properties
	Regular Operations
	Intersection and Complementation
	Homomorphisms
	Inverse Homomorphisms

