1 Closure Properties

1.1 Regular Operations

Union of CFLs

Proposition 1. If L_1 and L_2 are context-free languages then $L_1 \cup L_2$ is also context-free.

Proof. Let L_1 be language recognized by $G_1 = (V_1, \Sigma, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma, R_2, S_2)$. Assume that $V_1 \cap V_2 = \emptyset$; if this assumption is not true, rename the variables of one of the grammars to make this condition true.

We will construct a grammar $G = (V, \Sigma, R, S)$ such that $\mathbf{L}(G) = \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$ as follows.

- $V = V_1 \cup V_2 \cup \{S\}$, where $S \notin V_1 \cup V_2$ (and $V_1 \cap V_2 = \emptyset$)
- $R = R_1 \cup R_2 \cup \{S \to S_1 | S_2\}$

We need to show that $\mathbf{L}(G) = \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$. Consider $w \in \mathbf{L}(G)$. That means there is a derivation $S \stackrel{*}{\Rightarrow}_G w$. Since the only rules involving S are $S \to S_1$ and $S \to S_2$, this derivation is either of the form $S \Rightarrow_G S_1 \stackrel{*}{\Rightarrow}_G w$ or $S \Rightarrow_G S_2 \stackrel{*}{\Rightarrow}_G w$. Consider the first case. Since the only rules for variables in V_1 are those belonging to R_1 and since $S_1 \stackrel{*}{\Rightarrow}_G w$, we have $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$, and so $w \in L_1 = \mathbf{L}(G_1)$. If the derivation $S \stackrel{*}{\Rightarrow}_G w$ is of the form $S \Rightarrow_G S_2 \stackrel{*}{\Rightarrow}_G w$, then by a similar reasoning we can conclude that $w \in \mathbf{L}(G_2)$. Hence if $w \in \mathbf{L}(G)$ then $w \in \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$. Conversely, consider $w \in \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$. Suppose $w \in \mathbf{L}(G_1)$; the case that $w \in \mathbf{L}(G_2)$ is similar and skipped. That means that $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$. Since $S_1 \subseteq S_1 \stackrel{*}{\Rightarrow}_{G_1} w$. Thus, we have $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$ which means that $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$. Since $S_1 \subseteq S_1 \stackrel{*}{\Rightarrow}_{G_1} w$. Thus, we have $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$ which means that $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$. This completes the proof.

Concatenation, Kleene Closure

Proposition 2. CFLs are closed under concatenation and Kleene closure

Proof. Let L_1 be language generated by $G_1 = (V_1, \Sigma, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma, R_2, S_2)$. As before we will assume that $V_1 \cap V_2 = \emptyset$.

Concatenation Let $G = (V, \Sigma, R, S)$ be such that $V = V_1 \cup V_2 \cup \{S\}$ (with $S \notin V_1 \cup V_2$), and $R = R_1 \cup R_2 \cup \{S \to S_1 S_2\}$. We will show that $\mathbf{L}(G) = \mathbf{L}(G_1)\mathbf{L}(G_2)$. Suppose $w \in \mathbf{L}(G)$. Then there is a leftmost derivation $S \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w$. The form such a derivation is $S \Rightarrow^G S_1 S_2 \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w_1 S_2 \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w_1 w_2 = w$. Thus, $S_1 \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w_1$ and $S_2 \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w_2$. Since the rules in R restricted to V_1 are R_1 and restricted to V_2 are R_2 , we can conclude that $S_1 \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w_1$ and $S_2 \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w_2$. Thus, $w_1 \in \mathbf{L}(G_1)$ and $w_2 \in \mathbf{L}(G_2)$ and therefore, $w = w_1 w_2 \in \mathbf{L}(G_1) \mathbf{L}(G_2)$. On the other hand, if $w_1 \in \mathbf{L}(G_1)$ and $w_2 \in \mathbf{L}(G_2)$ then we have $S_1 \stackrel{*}{\Rightarrow}_{G_1} w_1$ and $S_2 \stackrel{*}{\Rightarrow}_{G_2} w_2$. Take $w = w_1 w_2 \in \mathbf{L}(G_1) \mathbf{L}(G_2)$. Now since $R_1 \cup R_2 \subseteq R$, we have $S_1 \stackrel{*}{\Rightarrow}_G w_1$ and $S_2 \stackrel{*}{\Rightarrow}_G w_2$. Therefore, we have, $S \Rightarrow_G S_1 S_2 \stackrel{*}{\Rightarrow}_G w_1 S_2 \stackrel{*}{\Rightarrow}_G w_1 w_2 = w$, and so $w \in \mathbf{L}(G)$.

Kleene Closure Let $G = (V = V_1 \cup \{S\}, \Sigma, R = R_1 \cup \{S \to SS_1 \mid \epsilon\}, S)$, where $S \not\in V_1$. We will show that $\mathbf{L}(G) = (\mathbf{L}(G_1))^*$. We will show if $w \in \mathbf{L}(G)$ then $w \in (\mathbf{L}(G_1))^*$ by induction on the length of the leftmost derivation of w. For the base case, consider w such that $S \Rightarrow^G w$. Since $S \to \epsilon$ is the only rule for S whose right-hand side has terminals, this means that $w = \epsilon$. Further, $\epsilon \in (\mathbf{L}(G_1))^*$ which establishes the base case. The induction hypothesis assumes that for all strings w, if $S \Rightarrow^G_{\text{lm}} w$ in < n steps then $w \in (\mathbf{L}(G_1))^*$. Consider w such that $S \Rightarrow^G_{\text{lm}} w$ in n steps. Any leftmost derivation has the following form: $S \Rightarrow^G_{S} SS_1 \Rightarrow^G_{\text{lm}} w_1 S_1 \Rightarrow^G_{\text{lm}} w_1 w_2 = w$. Now we have $S \Rightarrow^G_{\text{lm}} w_1$ is < n steps (because $S_1 \Rightarrow^G_{\text{lm}} w_2$ takes at least one step), and $S_1 \Rightarrow^G_{\text{lm}} w_2$. This means that $w_1 \in (\mathbf{L}(G_1))^*$ (by induction hypothesis) and $w_2 \in \mathbf{L}(G_1)$ (since the only rules in R for variables in V_1 are those belonging to R_1). Thus, $w = w_1 w_2 \in (\mathbf{L}(G_1))^*$. For the converse, suppose $w \in (\mathbf{L}(G_1))^*$. By definition, this means that there are $w_1, w_2, \ldots w_n$ (for $n \geq 0$) such that $w_i \in \mathbf{L}(G_1)$ for all i. Now if n = 0 (i.e., $w = \epsilon$) then we have $S \Rightarrow_G w$ because $S \to \epsilon$ is a rule. Otherise, since $w_i \in \mathbf{L}(G_1)$, we have $S_1 \Rightarrow^G_{G_1} w_i$, for each i. Since $R_1 \subseteq R$, $S_1 \Rightarrow^G_{G_1} w_i$. Hence we have the following derivation

$$S \Rightarrow_G SS_1 \Rightarrow_G SSS_1 \Rightarrow_G \dots \Rightarrow_G S(S_1)^n \Rightarrow_G (S_1)^n \stackrel{*}{\Rightarrow}_G w_1(S_1)^{n-1} \stackrel{*}{\Rightarrow}_G \dots \stackrel{*}{\Rightarrow}_G w_1w_2 \dots w_n = w$$

1.2 Intersection and Complementation

Intersection

Proposition 3. CFLs are not closed under intersection

Proof. • $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL

- Generated by a grammar with rules $S \to XY; X \to aXb|\epsilon; Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX | \epsilon$; $Y \to bYc | \epsilon$.
- But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$, which we will see soon, is not a CFL.

Intersection with Regular Languages

Proposition 4. If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P' will simulate P and M simultaneously on the same input and accept if both accept. Then P' accepts $L \cap R$.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M)
- These determine the transition function of P'
- The final states of P' are those in which both the state of P and state of M are accepting.

More formally, let $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA such that $\mathbf{L}(M) = R$, and $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, F_2)$ be a PDA such that $\mathbf{L}(P) = L$. Then consider $P' = (Q, \Sigma, \Gamma, \delta, q_0, F)$ such that

- $Q = Q_1 \times Q_2$
- $q_0 = (q_1, q_2)$
- $F = F_1 \times F_2$

$$\delta((p,q),x,a) = \begin{cases} \{((p,q'),b) \mid (q',b) \in \delta_2(q,x,a)\} & \text{when } x = \epsilon \\ \{((p',q'),b) \mid p' = \delta_1(p,x) \text{ and } (q',b) \in \delta_2(q,x,a)\} & \text{when } x \neq \epsilon \end{cases}$$

One can show by induction on the number of computation steps, that for any $w \in \Sigma^*$

$$\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p,q), \sigma \rangle$$
 iff $q_1 \xrightarrow{w}_M p$ and $\langle q_2, \epsilon \rangle \xrightarrow{w}_{P} \langle q, \sigma \rangle$

The proof of this statement is left as an exercise. Now as a consequence, we have $w \in L(P')$ iff $\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p, q), \sigma \rangle$ such that $(p, q) \in F$ (by definition of PDA acceptance) iff $\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p, q), \sigma \rangle$ such that $p \in F_1$ and $q \in F_2$ (by definition of F) iff $q_1 \xrightarrow{w}_M p$ and $\langle q_2, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$ and $p \in F_1$ and $q \in F_2$ (by the statement to be proved as exercise) iff $w \in L(M)$ and $w \in L(P)$ (by definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 5. Context-free languages are not closed under complementation.

Proof. [**Proof 1**] Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

[**Proof 2**] $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.

• L generated by a grammar with rules $X \to a|b, A \to a|XAX, B \to b|XBX, S \to A|B|AB|BA$

But
$$\overline{L} = \{ww \mid w \in \{a, b\}^*\}$$
 we will see is not a CFL!

Set Difference

Proposition 6. If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition 7. If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proof.
$$L \setminus R = L \cap \overline{R}$$

1.3 Homomorphisms

Homomorphism

Proposition 8. Context free languages are closed under homomorphisms.

Proof. Let $G = (V, \Sigma, R, S)$ be the grammar generating L, and let $h : \Sigma^* \to \Gamma^*$ be a homomorphism. A grammar $G' = (V', \Gamma, R', S')$ for generating h(L):

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'
 - In each rule of G, if a appears in the RHS, replace it by X_a
- For each X_a , add the rule $X_a \to h(a)$

$$G'$$
 generates $h(L)$. (Exercise!)

Example 9. Let G have the rules $S \to 0S0|1S1|\epsilon$.

Consider the homorphism $h: \{0,1\}^* \to \{a,b\}^*$ given by h(0) = aba and h(1) = bb. Rules of G' s.t. $\mathbf{L}(G') = \mathbf{L}(L(G))$:

$$\begin{array}{ccc} S & \rightarrow & X_0 S X_0 |X_1 S X_1| \epsilon \\ X_0 & \rightarrow & aba \\ X_1 & \rightarrow & bb \end{array}$$

1.4 Inverse Homomorphisms

Inverse Homomorphisms

Recall: For a homomorphism $h, h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition 10. If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L: the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on h(a). Can we do the same with PDAs?

- Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Proof. Let $P = (Q, \Delta, \Gamma, \delta, q_0, F)$ be a PDA such that $\mathbf{L}(P) = L$. Let $h : \Sigma^* \to \Delta^*$ be a homomorphism such that $n = \max_{a \in \Sigma} |h(a)|$, i.e., every symbol of Σ is mapped to a string under h of length at most n. Consider the PDA $P' = (Q', \Sigma, \Gamma, \delta', q'_0, F')$ where

- $Q' = Q \times \Delta^{\leq n}$, where $\Delta^{\leq n}$ is the collection of all strings of length at most n over Δ .
- $q_0' = (q_0, \epsilon)$
- $F' = F \times \{\epsilon\}$
- δ' is given by

$$\delta'((q,v),x,a) = \begin{cases} \{((q,h(x)),\epsilon)\} & \text{if } v=a=\epsilon \\ \{((p,u),b) \mid (p,b) \in \delta(q,y,a)\} & \text{if } v=yu,\, x=\epsilon, \text{ and } y \in (\Delta \cup \{\epsilon\}) \end{cases}$$

and $\delta'(\cdot) = \emptyset$ in all other cases.

We can show by induction that for every $w \in \Sigma^*$

$$\langle q'_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (q, v), \sigma \rangle \text{ iff } \langle q_0, \epsilon \rangle \xrightarrow{w'}_{P} \langle q, \sigma \rangle$$

where h(w) = w'v. Again this induction proof is left as an exercise. Now, $w \in \mathbf{L}(P')$ iff $\langle q'_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (q, \epsilon), \sigma \rangle$ where $q \in F$ (by definition of PDA acceptance and F') iff $\langle q_0, \epsilon \rangle \xrightarrow{h(w)}_{P} \langle q, \sigma \rangle$ (by exercise) iff $h(w) \in \mathbf{L}(P)$ (by definition of PDA acceptance). Thus, $\mathbf{L}(P') = h^{-1}(\mathbf{L}(P)) = h^{-1}(L)$.