1 Closure Properties

1.1 Regular Operations
Union of CFLs

Proposition 1. If L1 and Lo are context-free languages then L1 U Lo is also context-free.

Proof. Let L; be language recognized by G = (V1,%, Ry, 51) and Ly the language recognized by
Go = (Vo,%, Re, S2). Assume that V4 NV; = (); if this assumption is not true, rename the variables
of one of the grammars to make this condition true.

We will construct a grammar G = (V, %, R, S) such that L(G) = L(G1) UL(G2) as follows.

o V=ViUV,U{S}, where S ¢ V1 UV; (and V4 NV = 0)
° R:RlURQU{S—%SﬂSQ}

We need to show that L(G) = L(G1) UL(G2). Consider w € L(G). That means there is a
derivation S =¢ w. Since the only rules involving S are S — S; and S — S, this derivation
is either of the form S =g S; =¢ w or S =¢ S =¢ w. Consider the first case. Since the
only rules for variables in V; are those belonging to R; and since S 2 w, we have S; :*>G1 w,
and so w € L; = L(Gy). If the derivation S 2 w is of the form S =¢ Sy =¢ w, then by a
similar reasoning we can conclude that w € L(G2). Hence if w € L(G) then w € L(G1) U L(G2).
Conversely, consider w € L(G1) UL(G2). Suppose w € L(G1); the case that w € L(G3) is similar
and skipped. That means that S :*>G1 w. Since 1 C R, we have Sp :*>G w. Thus, we have
S =@ S1 =g w which means that w € L(G). This completes the proof. O

Concatenation, Kleene Closure

Proposition 2. CFLs are closed under concatenation and Kleene closure

Proof. Let Ly be language generated by G; = (V1,%, Ry, S1) and Lo the language generated by
Go = (V2,%, Ro, So). As before we will assume that V3 NV, = 0.

Concatenation Let G = (V,X, R, S) be such that V = V3 UV, U {S} (with S ¢ V; U V3), and
R =Ry URyU{S — 5152}. We will show that L(G) = L(G1)L(G2). Suppose w € L(G).

Then there is a leftmost derivation S = w. The form such a derivation is S =% 1Sy =

G G G . . .
w199 :*>1m wiwg = w. Thus, S7 :*>1m w1 and So :*>1m wsg. Since the rules in R restricted to
. G1 Go
Vi are R; and restricted to V5 are Ro, we can conclude that S; élm wy and S5 élm ws.

Thus, w; € L(G;1) and we € L(G2) and therefore, w = wiws € L(G1)L(G2). On the other
hand, if w; € L(G1) and wy € L(G2) then we have S; :*>G1 wi and Sy éGQ wy. Take
w = wiwe € L(G1)L(G2). Now since R1 U Ry C R, we have S; 2o wp and Sy = wo.
Therefore, we have, S =g 515 :*>G w1 S :*>G wiwe = w, and so w € L(G).



Kleene Closure Let G = (V =V, U{S},X,R= R U{S — S5 | €},S), where S ¢ V;. We will
show that L(G) = (L(G1))*. We will show if w € L(G) then w € (L(G1))* by induction
on the length of the leftmost derivation of w. For the base case, consider w such that
S =C w. Since S — € is the only rule for S whose right-hand side has terminals, this
means that w = e. Further, e € (L(G7))* which establishes the base case. The induction
hypothesis assumes that for all strings w, if S =, w in < n steps then w € (L(G1))*.

« G
Consider w such that S =, w in n steps. Any leftmost derivation has the following form:
x G * x G .
S =6 85, =1n W1S1 =, wiwe = w. Now we have S =, w; is < n steps (because
x G x G .

S1 =, w2 takes at least one step), and S7 =, wa. This means that wy € (L(G1))* (by
induction hypothesis) and ws € L(G1) (since the only rules in R for variables in V; are those
belonging to R;). Thus, w = wywy € (L(G1))*. For the converse, suppose w € (L(G1))*. By
definition, this means that there are wi,ws,...w, (for n > 0) such that w; € L(G}) for all
i. Now if n = 0 (i.e., w = €) then we have S =G w because S — € is a rule. Otherise, since
w; € L(Gy), we have S =@, w;, for each i. Since Ry C R, S; =¢ w;. Hence we have the
following derivation

S =588 =G 855 =g =¢8(51)" =g (S1)" Sqwi(S1)" ! D¢ DSgwiwy - wy = w

O]

1.2 Intersection and Complementation

Intersection

Proposition 3. CFLs are not closed under intersection
Proof. o Ly = {a'b'c¢/ |i,j >0} is a CFL
— Generated by a grammar with rules S — XY; X — aXble; Y — ¢Ye.
o Ly ={at/c |i,j >0} is a CFL.
— Generated by a grammar with rules S — XY; X — aX|e; Y — bY cle.

e But Lj N Ly = {a"b"c"™ | n > 0}, which we will see soon, is not a CFL. O

Intersection with Regular Languages

Proposition 4. If L is a CFL and R is a reqular language then LN R is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA
P’ will simulate P and M simultaneously on the same input and accept if both accept. Then P’
accepts LN R.



e The stack of P’ is the stack of P

e The state of P’ at any time is the pair (state of P, state of M)

e These determine the transition function of P’

e The final states of P" are those in which both the state of P and state of M are accepting.

More formally, let M = (Q1, %, 01, q1, F1) be a DFA such that L(M) = R, and P = (Q2, X, T, d2, g2, F»)
be a PDA such that L(P) = L. Then consider P’ = (Q, X, T, 6, qo, F') such that

e Q=01 xQs

* g = (q1,92)
o '=F x Fy
_ {((pa q/)vb) | (q,ab) € 62((171'70’)} when z = €
5((p,q),x,a) = { {((p’,q’),b) |p/ = 51(p, x) and (q’,b) c (52((],1’,&)} when z % €

One can show by induction on the number of computation steps, that for any w € X*
(q0,€) == pr ((p,), 0) iff i —=pr p and (g2, €) —=p (g, 0)

The proof of this statement is left as an exercise. Now as a consequence, we have w € L(P’)
iff (qo,€) —=pr {(p,q),0) such that (p,q) € F (by definition of PDA acceptance) iff (g, ¢) ——p
{(p,q),0) such that p € Fy and q € Fy (by definition of F) iff g1 —s p and (g2, €) —p (g,0) and
p € Fy and ¢ € Fy (by the statement to be proved as exercise) iff w € L(M) and w € L(P) (by

definition of DFA acceptance and PDA acceptance). O

<

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 5. Context-free languages are not closed under complementation.

Proof. [Proof 1] Suppose CFLs were closed under complementation. Then for any two CFLs Ly,
Lo, we have

e L; and Ly are CFL. Then, since CFLs closed under union, L; U Ly is CFL. Then, again by
hypothesis, L1 U Ly is CFL.

e ie., Li1NLyisa CFL

i.e., CFLs are closed under intersection. Contradiction!
[Proof 2] L = {z | z not of the form ww} is a CFL.

e [ generated by a grammar with rules X — a|b, A — a|XAX, B — b/ XBX,S — A|B|AB|BA

But L = {ww | w € {a,b}*} we will see is not a CFL! O



Set Difference

Proposition 6. If Ly is a CFL and Lo is a CFL then Ly \ Ly is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of
set difference. (How?) O

Proposition 7. If L is a CFL and R is a regular language then L\ R is a CFL
Proof. L\R=LNR O

1.3 Homomorphisms

Homomorphism

Proposition 8. Context free languages are closed under homomorphisms.

Proof. Let G = (V,X, R, S) be the grammar generating L, and let h : ¥* — I'* be a homomorphism.
A grammar G' = (V',T', R, S") for generating h(L):

e Include all variables from G (i.e., V' D V), and let S’ =S
e Treat terminals in G as variables. i.e., for every a € X

— Add a new variable X, to V'
— In each rule of G, if a appears in the RHS, replace it by X,

e For each X,, add the rule X, — h(a)
G’ generates h(L). (Exercise!) O

Ezample 9. Let G have the rules S — 050[151]e.
Consider the homorphism h : {0,1}* — {a,b}* given by h(0) = aba and h(1) = bb.
Rules of G’ s.t. L(G') = L(L(Q)):

S — X05X0|X15X1|6
Xo — aba
X1 — bb




1.4 Inverse Homomorphisms

Inverse Homomorphisms

Recall: For a homomorphism h, h=}(L) = {w | h(w) € L}

Proposition 10. If L is a CFL then h™'(L) is a CFL

Proof Idea
For regular language L: the DFA for h~1(L) on reading a symbol a, simulated the DFA for L on
h(a). Can we do the same with PDAs?

e Key idea: store h(a) in a “buffer” and process symbols from h(a) one at a time (according
to the transition function of the original PDA), and the next input symbol is processed only
after the “buffer” has been emptied.

e Where to store this “buffer”? In the state of the new PDA!

Proof. Let P = (Q,A,T,4,qo, F) be a PDA such that L(P) = L. Let h : ¥* — A* be a homomor-
phism such that n = max,ex |h(a)|, i-e., every symbol of ¥ is mapped to a string under h of length
at most n. Consider the PDA P/ = (Q',X,T',¢, ¢}, F') where

e Q' =Q x AS" where AS" is the collection of all strings of length at most n over A.
e g = (qo;€)
o F/' =F x {e}

e ¢’ is given by

& ((q,v),z,a) = {{((z, Z(x)),e)} fomgee

{((p,u),b) | (p,0) € 6(q,y,a)} ifv=yu, v =¢ and y € (AU {e})
and 0'(+) = () in all other cases.

We can show by induction that for every w € ¥*

(g, €) ~pr ((g,0),0) iff (g0, €) ~Lp (g, )

where h(w) = w'v. Again this induction proof is left as an exercise. Now, w € L(P") iff (¢}, ¢) —pr

((g,€),0) where ¢ € F (by definition of PDA acceptance and F) iff (qo, €) MP (q,0) (by exercise)
iff h(w) € L(P) (by definition of PDA acceptance). Thus, L(P') = h=1(L(P)) = h~1(L). O
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