1 Operations on Languages

Operations on Languages

e Recall: A language is a set of strings

e We can consider new languages derived from operations on given languages
—eg., LiULy, LiNLoy, ...

e A simple but powerful collection of operations:

— Union, Concatenation and Kleene Closure

Union is a familiar operation on sets. We define and explain the other two operations below.
Concatenation of Languages

Definition 1. Given languages L; and Ly, we define their concatenation to be the language L o
Ly={zy|z € L1, y € Lo}

Ezxample 2. e L; = {hello} and Ly = {world} then L; o Ly = {helloworld}
e L; ={00,10}; Ly = {0,1}. Ly o Ly = {000,001,100,101}

e [; = set of strings ending in 0; Ly = set of strings beginning with 01. L; o Ly = set of strings
containing 001 as a substring

e Lo{e}=L. Lo =0.

Kleene Closure

Definition 3.

L" 1oL otherwise )
>0

i.e., L'is Lo Lo---o L (concatenation of i copies of L), for i > 0.
L*, the Kleene Closure of L: set of strings formed by taking any number of strings (possibly
none) from L, possibly with repetitions and concatenating all of them.

o If L ={0,1}, then L = {e}, L? = {00,01,10,11}. L* = set of all binary strings (including
€).
e (V= {e}. Fori>0, 0" =0. 0* = {e}

e () is one of only two languages whose Kleene closure is finite. Which is the other? {e}* = {¢}.




2 Regular Expressions

2.1 Definition and Identities

Regular Expressions
A Simple Programming Language

Figure 1: Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of “elementary”
languages combined using the three operations union, concatenation and Kleene closure.

Regular Expressions
Formal Inductive Definition

Syntax and Semantics
A regular expression over an alphabet X is of one of the following forms:

Syntax Semantics

0 L(®) = {}
Basis € L(e) = {e}

a L(a) = {a}

(R1 U Rg) L((R1 U RQ)) = L(Rl) U L(RQ)
Induction (R;oR) L((RioRs2))=L(Ry)oL(R)
(R7) L((R1)) = L(Ry)"

Notational Conventions
Remowing the brackets To avoid cluttering of parenthesis, we adopt the following conventions.

e Precedence: *,0,U. For example, RU S* o T means (RU ((S*)oT))
e Associativity: (RU(SUT)) = ((RUS)UT) = RUSUT and (Ro(SoT)) = ((RoS)oT) = RoSoT.

Also will sometimes omit o: e.g. will write RS instead of Ro S
Regular Expression Examples




R L(R)

(ou1)” = ({opuf{1p)r =A{0, 1}

00 0

0* U (0*10*10*10*)* Strings where the number of 1s is divisible by 3
(Ou1)*001(0U1)* Strings that have 001 as a substring

(10)*U (01)*U0(10)* U 1(01)* Strings that consist of alternating Os and 1s
(eU1)(01)*(eU0) Strings that consist of alternating Os and 1s
(OUue)(1U10)* Strings that do not have two consecutive Os

Regular Languages

Definition 4. A language L C ¥* is a regular language iff there is a regular expression R such that
L(R)=L.

Some Regular Expression Identities
We say R; = Ry if L(R;) = L(R32).

o Commutativity: R1 U Re = Re U Ry (but Ry o Ry # Ry o Ry typically)

Associativity: (R U R2) U Rg = Ry U (R U R3) and (Rj o Re) o R3 = Ry o (R2 0 R3)

Distributivity: Ro (R1 URy) = RoRjURo Ry and (RiURy)oR=RjoRURs0R

Concatenating with e: Roe=€eo R=R

Concatenating with ): Rod=0o R =1

RUO=R. RUe=Riff c € L(R)

.@*:6

Useful Notation

Definition 5. Define R = RR*. Thus, R* = RT Ue. In addition, RT = R* iff e € L(R).




	Operations on Languages
	Regular Expressions
	Definition and Identities


