
1 Operations on Languages

Operations on Languages

• Recall: A language is a set of strings

• We can consider new languages derived from operations on given languages

– e.g., L1 ∪ L2, L1 ∩ L2, . . .

• A simple but powerful collection of operations:

– Union, Concatenation and Kleene Closure

Union is a familiar operation on sets. We define and explain the other two operations below.
Concatenation of Languages

Definition 1. Given languages L1 and L2, we define their concatenation to be the language L1 ◦
L2 = {xy | x ∈ L1, y ∈ L2}

Example 2. • L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}

• L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}

• L1 = set of strings ending in 0; L2 = set of strings beginning with 01. L1 ◦L2 = set of strings
containing 001 as a substring

• L ◦ {ε} = L. L ◦ ∅ = ∅.

Kleene Closure

Definition 3.

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any number of strings (possibly

none) from L, possibly with repetitions and concatenating all of them.

• If L = {0, 1}, then L0 = {ε}, L2 = {00, 01, 10, 11}. L∗ = set of all binary strings (including
ε).

• ∅0 = {ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

• ∅ is one of only two languages whose Kleene closure is finite. Which is the other? {ε}∗ = {ε}.

1



2 Regular Expressions

2.1 Definition and Identities

Regular Expressions
A Simple Programming Language

Figure 1: Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of “elementary”
languages combined using the three operations union, concatenation and Kleene closure.

Regular Expressions
Formal Inductive Definition

Syntax and Semantics
A regular expression over an alphabet Σ is of one of the following forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a L(a) = {a}

(R1 ∪R2) L((R1 ∪R2)) = L(R1) ∪ L(R2)
Induction (R1 ◦R2) L((R1 ◦R2)) = L(R1) ◦ L(R2)

(R∗
1) L((R∗

1)) = L(R1)
∗

Notational Conventions
Removing the brackets To avoid cluttering of parenthesis, we adopt the following conventions.

• Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means (R ∪ ((S∗) ◦ T ))

• Associativity: (R∪(S∪T )) = ((R∪S)∪T ) = R∪S∪T and (R◦(S◦T )) = ((R◦S)◦T ) = R◦S◦T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S
Regular Expression Examples

2



R L(R)
(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗
0∅ ∅
0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s is divisible by 3
(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a substring
(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternating 0s and 1s
(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternating 0s and 1s
(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two consecutive 0s

Regular Languages

Definition 4. A language L ⊆ Σ∗ is a regular language iff there is a regular expression R such that
L(R) = L.

Some Regular Expression Identities
We say R1 = R2 if L(R1) = L(R2).

• Commutativity: R1 ∪R2 = R2 ∪R1 (but R1 ◦R2 6= R2 ◦R1 typically)

• Associativity: (R1 ∪R2) ∪R3 = R1 ∪ (R2 ∪R3) and (R1 ◦R2) ◦R3 = R1 ◦ (R2 ◦R3)

• Distributivity: R ◦ (R1 ∪R2) = R ◦R1 ∪R ◦R2 and (R1 ∪R2) ◦R = R1 ◦R ∪R2 ◦R

• Concatenating with ε: R ◦ ε = ε ◦R = R

• Concatenating with ∅: R ◦ ∅ = ∅ ◦R = ∅

• R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

• (R∗)∗ = R∗

• ∅∗ = ε

Useful Notation

Definition 5. Define R+ = RR∗. Thus, R∗ = R+ ∪ ε. In addition, R+ = R∗ iff ε ∈ L(R).

3


	Operations on Languages
	Regular Expressions
	Definition and Identities


