
1 Introducing Finite Automata

1.1 Problems and Computation

Decision Problems

Decision Problems
Given input, decide “yes” or “no”

• Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G?

• i.e., Compute a boolean function of input

General Computational Problem
In contrast, typically a problem requires computing some non-boolean function, or carrying out an
interactive/reactive computation in a distributed environment

• Examples: Find the factors of x. Find the balance in account number x.

• In this course, we will study decision problems because aspects of computability are captured
by this special class of problems

What Does a Computation Look Like?

• Some code (a.k.a. control): the same for all instances

• The input (a.k.a. problem instance): encoded as a string over a finite alphabet

• As the program starts executing, some memory (a.k.a. state)

– Includes the values of variables (and the “program counter”)

– State evolves throughout the computation

– Often, takes more memory for larger problem instances

• But some programs do not need larger state for larger instances!

1.2 Finite Automata: Informal Overview

Finite State Computation

• Finite state: A fixed upper bound on the size of the state, independent of the size of the input

– A sequential program with no dynamic allocation using variables that take boolean
values (or values in a finite enumerated data type)

1



– If t-bit state, at most 2t possible states

• Not enough memory to hold the entire input

– “Streaming input”: automaton runs (i.e., changes state) on seeing each bit of input

An Automatic Door

Front
pad

Rear
pad

door

Figure 1: Top view of Door

closed open

front

neither

rear
both

neither

front
rear
both

Figure 2: State diagram of controller

• Input: A stream of events <front>, <rear>, <both>, <neither> . . .

• Controller has a single bit of state.

Finite Automata
Details

Automaton
A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions
from one state to another on reading a symbol from the input.

Computation
Start at the initial state; in each step, read the next symbol of the input, take the transition (edge)
labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the input w, the machine is in a final state then w is
accepted; otherwise w is rejected.

2



q0 q1

0 0

1

1

Figure 3: Transition Diagram of automaton

Conventions

• The initial state is shown by drawing an incoming arrow into the state, with no source.

• Final/accept states are indicated by drawing them with a double circle.

Example: Computation

• On input 1001, the computation is

1. Start in state q0. Read 1 and goto q1.

2. Read 0 and goto q1.

3. Read 0 and goto q1.

4. Read 1 and goto q0. Since q0 is not a final state 1001 is rejected.

• On input 010, the computation is

1. Start in state q0. Read 0 and goto q0.

2. Read 1 and goto q1.

3. Read 0 and goto q1. Since q1 is a final state 010 is accepted.

q0 q1

0 0

1

1

3



1.3 Applications

Finite Automata in Practice

• grep

• Thermostats

• Coke Machines

• Elevators

• Train Track Switches

• Security Properties

• Lexical Analyzers for Parsers

2 Formal Definitions

2.1 Deterministic Finite Automaton

Defining an Automaton

To describe an automaton, we to need to specify

• What the alphabet is,

• What the states are,

• What the initial state is,

• What states are accepting/final, and

• What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Deterministic Finite Automata
Formal Definition

Definition 1. A deterministic finite automaton (DFA) is M = (Q,Σ, δ, q0, F ), where

• Q is the finite set of states

• Σ is the finite alphabet

• δ : Q× Σ→ Q “Next-state” transition function

4



0 1

q0 q0 q1
q1 q1 q0

Figure 5: Transition Table representation

• q0 ∈ Q initial state

• F ⊆ Q final/accepting states

Given a state and a symbol, the next state is “determined”.

Formal Example of DFA

Example 2.

q0 q1

0 0

1

1

Figure 4: Transition Diagram of DFA

Formally the automaton is M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where

δ(q0, 0) = q0 δ(q0, 1) = q1
δ(q1, 0) = q1 δ(q1, 1) = q0

Computation

Definition 3. For a DFA M = (Q,Σ, δ, q0, F ), string w = w1w2 · · ·wk, where for each i wi ∈ Σ,
and states q1, q2 ∈ Q, we say q1

w−→M q2 if there is a sequence of states r0, r1, . . . rk such that

• r0 = q1,

• for each i, δ(ri, wi+1) = ri+1, and

• rk = q2.

Definition 4. For a DFA M = (Q,Σ, δ, q0, F ) and string w ∈ Σ∗, we say M accepts w iff q0
w−→M q

for some q ∈ F .

Useful Notation

5



Definition 5. For a DFA M = (Q,Σ, δ, q0, F ), let us define a function δ̂M : Q× Σ∗ → P(Q) such
that δ̂M (q, w) = {q′ ∈ Q | q w−→M q′}.

We could say M accepts w iff δ̂M (q0, w) ∩ F 6= ∅.

Proposition 6. For a DFA M = (Q,Σ, δ, q0, F ), and any q ∈ Q, and w ∈ Σ∗, |δ̂M (q, w)| = 1.

Acceptance/Recognition

Definition 7. The language accepted or recognized by a DFA M over alphabet Σ is L(M) = {w ∈
Σ∗ |M accepts w}. A language L is said to be accepted/recognized by M if L = L(M).

2.2 Examples

Example I

q0

0, 1

Figure 6: Automaton accepts all strings of 0s and 1s

Example II

q0 q1

0 1

1

0

Figure 7: Automaton accepts strings ending in 1

Example III

6



q0 q1

0 0

1

1

Figure 8: Automaton accepts strings having an odd number of 1s

Example IV

q0 q1

q2q3

1

1

1

1

0 0 0 0

Figure 9: Automaton accepts strings having an odd number of 1s and odd number of 0s

3 Designing DFAs

3.1 General Method

Typical Problem

Problem
Given a language L, design a DFA M that accepts L, i.e., L(M) = L.

Methodology

• Imagine yourself in the place of the machine, reading symbols of the input, and trying to
determine if it should be accepted.

• Remember at any point you have only seen a part of the input, and you don’t know when it
ends.

• Figure out what to keep in memory. It cannot be all the symbols seen so far: it must fit into
a finite number of bits.

7



3.2 Examples

Strings containing 0

Problem
Design an automaton that accepts all strings over {0, 1} that contain at least one 0.

Solution
What do you need to remember? Whether you have seen a 0 so far or not!

qnoz qzer

1 0, 1

0

Figure 10: Automaton accepting strings with at least one 0.

Even length strings

Problem
Design an automaton that accepts all strings over {0, 1} that have an even length.

Solution
What do you need to remember? Whether you have seen an odd or an even number of symbols.

qe qo

0, 1

0, 1

Figure 11: Automaton accepting strings of even length.

Pattern Recognition

Problem
Design an automaton that accepts all strings over {0, 1} that have 001 as a substring, where u is a
substring of w if there are w1 and w2 such that w = w1uw2.

Solution
What do you need to remember? Whether you

• haven’t seen any symbols of the pattern

8



• have just seen 0

• have just seen 00

• have seen the entire pattern 001

Pattern Recognition Automaton

qε q0 q00 qp

1

0

1

0

0

1

0, 1

Figure 12: Automaton accepting strings having 001 as substring.

grep Problem

Problem
Given text T and string s, does s appear in T?

Näıve Solution

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
T1 T2 T3 . . . Tn Tn+1 . . . Tt

Running time = O(nt), where |T | = t and |s| = n.

grep Problem
Smarter Solution

Solution

• Build DFA M for L = {w | there are u, v s.t. w = usv}

• Run M on text T

Time = time to build M + O(t)!

Questions

9



• Is L regular no matter what s is?

• If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such that w is the binary representation
of a number that is a multiple of 5.

Solution
What must be remembered? The remainder when divided by 5.

How do you compute remainders?

• If w is the number n then w0 is 2n and w1 is 2n+ 1.

• (a.b+ c) mod 5 = (a.(b mod 5) + c) mod 5

• e.g. 1011 = 11 (decimal) ≡ 1 mod 5 10110 = 22 (decimal) ≡ 2 mod 5 10111 = 23 (decimal)
≡ 3 mod 5

Automaton for recognizing Multiples

q0

q1

q4

q2

q3

0
1

0

1
1

0

1

0

0

1

Figure 13: Automaton recognizing binary numbers that are multiples of 5.

A One k-positions from end

Problem

10



Design an automaton for the language Lk = {w | kth character from end of w is 1}

Solution
What do you need to remember? The last k characters seen so far!

Formally, Mk = (Q, {0, 1}, δ, q0, F )

• States = Q = {〈w〉 | w ∈ {0, 1}∗ and |w| ≤ k}

• δ(〈w〉, b) =

{
〈wb〉 if |w| < k
〈w2w3 . . . wkb〉 if w = w1w2 . . . wk

• q0 = 〈ε〉

• F = {〈1w2w3 . . . wk〉 | wi ∈ {0, 1}}

11


	Introducing Finite Automata
	Problems and Computation
	Finite Automata: Informal Overview
	Applications

	Formal Definitions
	Deterministic Finite Automaton
	Examples

	Designing DFAs
	General Method
	Examples


