1 Introducing Finite Automata

1.1 Problems and Computation

Decision Problems

Decision Problems

Given input, decide "yes" or "no"

- Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G?
- i.e., Compute a boolean function of input

General Computational Problem

In contrast, typically a problem requires computing some non-boolean function, or carrying out an interactive/reactive computation in a distributed environment

- Examples: Find the factors of x. Find the balance in account number x.
- In this course, we will study decision problems because aspects of computability are captured by this special class of problems

What Does a Computation Look Like?

- Some code (a.k.a. *control*): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- As the program starts executing, some memory (a.k.a. state)
 - Includes the values of variables (and the "program counter")
 - State evolves throughout the computation
 - Often, takes more memory for larger problem instances
- But some programs do not need larger state for larger instances!

1.2 Finite Automata: Informal Overview

Finite State Computation

- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
 - A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)

- If t-bit state, at most 2^t possible states
- Not enough memory to hold the entire input
 - "Streaming input": automaton runs (i.e., changes state) on seeing each bit of input

An Automatic Door

Figure 1: Top view of Door

Figure 2: State diagram of controller

- Input: A stream of events <front>, <rear>, <both>, <neither> ...
- Controller has a single bit of state.

Finite Automata

Details

Automaton

A finite automaton has: Finite set of states, with *start/initial* and *accepting/final* states; *Transitions* from one state to another on reading a symbol from the input.

Computation

Start at the initial state; in each step, read the next symbol of the input, take the transition (edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the input w, the machine is in a final state then w is accepted; otherwise w is rejected.

Figure 3: Transition Diagram of automaton

Conventions

- The initial state is shown by drawing an incoming arrow into the state, with no source.
- Final/accept states are indicated by drawing them with a double circle.

Example: Computation

- On input 1001, the computation is
 - 1. Start in state q_0 . Read 1 and goto q_1 .
 - 2. Read 0 and goto q_1 .
 - 3. Read 0 and goto q_1 .
 - 4. Read 1 and goto q_0 . Since q_0 is not a final state 1001 is rejected.
- On input 010, the computation is
 - 1. Start in state q_0 . Read 0 and goto q_0 .
 - 2. Read 1 and goto q_1 .
 - 3. Read 0 and goto q_1 . Since q_1 is a final state 010 is accepted.

1.3 Applications

Finite Automata in Practice

- grep
- Thermostats
- Coke Machines
- Elevators
- Train Track Switches
- Security Properties
- Lexical Analyzers for Parsers

2 Formal Definitions

2.1 Deterministic Finite Automaton

Defining an Automaton

To describe an automaton, we to need to specify

- What the alphabet is,
- What the states are,
- What the initial state is,
- What states are accepting/final, and
- What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Deterministic Finite Automata

Formal Definition

Definition 1. A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, q_0, F)$, where

- ullet Q is the finite set of states
- Σ is the finite alphabet
- $\delta: Q \times \Sigma \to Q$ "Next-state" transition function

$$\begin{array}{c|cc} & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_1 & q_0 \\ \end{array}$$

Figure 5: Transition Table representation

- $q_0 \in Q$ initial state
- $F \subseteq Q$ final/accepting states

Given a state and a symbol, the next state is "determined".

Formal Example of DFA

Example 2.

Figure 4: Transition Diagram of DFA

Formally the automaton is $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$ where

$$\delta(q_0, 0) = q_0$$
 $\delta(q_0, 1) = q_1$ $\delta(q_1, 0) = q_1$ $\delta(q_1, 1) = q_0$

Computation

Definition 3. For a DFA $M=(Q,\Sigma,\delta,q_0,F)$, string $w=w_1w_2\cdots w_k$, where for each i $w_i\in\Sigma$, and states $q_1,q_2\in Q$, we say $q_1\stackrel{w}{\longrightarrow}_M q_2$ if there is a sequence of states $r_0,r_1,\ldots r_k$ such that

- $r_0 = q_1$,
- for each i, $\delta(r_i, w_{i+1}) = r_{i+1}$, and
- $r_k = q_2$.

Definition 4. For a DFA $M = (Q, \Sigma, \delta, q_0, F)$ and string $w \in \Sigma^*$, we say M accepts w iff $q_0 \xrightarrow{w}_M q$ for some $q \in F$.

Useful Notation

Definition 5. For a DFA $M=(Q,\Sigma,\delta,q_0,F)$, let us define a function $\hat{\delta}_M:Q\times\Sigma^*\to\mathcal{P}(Q)$ such that $\hat{\delta}_M(q,w)=\{q'\in Q\mid q\xrightarrow{w}_M q'\}$. We could say M accepts w iff $\hat{\delta}_M(q_0,w)\cap F\neq\emptyset$.

Proposition 6. For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any $q \in Q$, and $w \in \Sigma^*$, $|\hat{\delta}_M(q, w)| = 1$.

Acceptance/Recognition

Definition 7. The language accepted or recognized by a DFA M over alphabet Σ is $\mathbf{L}(M) = \{w \in \mathbb{R} \mid \mathbb{R} \mid$ $\Sigma^* \mid M$ accepts w. A language L is said to be accepted/recognized by M if $L = \mathbf{L}(M)$.

2.2Examples

Example I

Figure 6: Automaton accepts all strings of 0s and 1s

Example II

Figure 7: Automaton accepts strings ending in 1

Example III

Figure 8: Automaton accepts strings having an odd number of 1s

Example IV

Figure 9: Automaton accepts strings having an odd number of 1s and odd number of 0s

3 Designing DFAs

3.1 General Method

Typical Problem

Problem

Given a language L, design a DFA M that accepts L, i.e., $\mathbf{L}(M) = L$.

Methodology

- Imagine yourself in the place of the machine, reading symbols of the input, and trying to determine if it should be accepted.
- Remember at any point you have only seen a part of the input, and you don't know when it ends.
- Figure out what to keep in memory. It cannot be all the symbols seen so far: it must fit into a finite number of bits.

3.2 Examples

Strings containing 0

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that contain at least one 0.

Solution

What do you need to remember? Whether you have seen a 0 so far or not!

Figure 10: Automaton accepting strings with at least one 0.

Even length strings

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have an even length.

Solution

What do you need to remember? Whether you have seen an odd or an even number of symbols.

Figure 11: Automaton accepting strings of even length.

Pattern Recognition

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have 001 as a substring, where u is a substring of w if there are w_1 and w_2 such that $w = w_1 u w_2$.

Solution

What do you need to remember? Whether you

• haven't seen any symbols of the pattern

- ullet have just seen 0
- have just seen 00
- have seen the entire pattern 001

Pattern Recognition Automaton

Figure 12: Automaton accepting strings having 001 as substring.

grep Problem

Problem

Given text T and string s, does s appear in T?

Naïve Solution

Running time = O(nt), where |T| = t and |s| = n.

grep Problem

Smarter Solution

Solution

- Build DFA M for $L = \{w \mid \text{there are } u, v \text{ s.t. } w = usv\}$
- ullet Run M on text T

Time = time to build M + O(t)!

Questions

- Is L regular no matter what s is?
- If yes, can M be built "efficiently"?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

Multiples

Problem

Design an automaton that accepts all strings w over $\{0,1\}$ such that w is the binary representation of a number that is a multiple of 5.

Solution

What must be remembered? The remainder when divided by 5.

How do you compute remainders?

- If w is the number n then w0 is 2n and w1 is 2n + 1.
- $(a.b+c) \mod 5 = (a.(b \mod 5) + c) \mod 5$
- e.g. 1011 = 11 (decimal) $\equiv 1 \mod 5$ 10110 = 22 (decimal) $\equiv 2 \mod 5$ 10111 = 23 (decimal) $\equiv 3 \mod 5$

Automaton for recognizing Multiples

Figure 13: Automaton recognizing binary numbers that are multiples of 5.

A One k-positions from end

Problem

Design an automaton for the language $L_k = \{w \mid k \text{th character from end of } w \text{ is } 1\}$

Solution

What do you need to remember? The last k characters seen so far! Formally, $M_k = (Q, \{0, 1\}, \delta, q_0, F)$

• States =
$$Q = \{\langle w \rangle \mid w \in \{0,1\}^* \text{ and } |w| \le k\}$$

•
$$\delta(\langle w \rangle, b) = \begin{cases} \langle wb \rangle & \text{if } |w| < k \\ \langle w_2 w_3 \dots w_k b \rangle & \text{if } w = w_1 w_2 \dots w_k \end{cases}$$

•
$$q_0 = \langle \epsilon \rangle$$

•
$$F = \{ \langle 1w_2w_3 \dots w_k \rangle \mid w_i \in \{0, 1\} \}$$