CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1 Undecidability

1.1 Recap

Decision Problems and Languages

- A decision problem requires checking if an input (string) has some property. Thus, a decision problem is a function from strings to boolean.
- A decision problem is represented as a *formal language* consisting of those strings (inputs) on which the answer is "ves".

Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- The language of a Turing Machine M, denoted as L(M), is the set of all strings w on which M accepts.
- A language L is recursively enumerable/Turing recognizable if there is a Turing Machine M such that L(M) = L.

Decidability

- A language L is decidable if there is a Turing machine M such that L(M) = L and M halts on every input.
- Thus, if L is decidable then L is recursively enumerable.

Undecidability

Definition 1. A language L is undecidable if L is not decidable. Thus, there is no Turing machine M that halts on every input and L(M) = L.

- This means that either L is not recursively enumerable. That is there is no turing machine M such that L(M) = L, or
- L is recursively enumerable but not decidable. That is, any Turing machine M such that L(M) = L, M does not halt on some inputs.

Big Picture

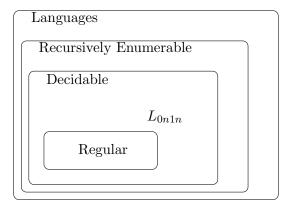


Figure 1: Relationship between classes of Languages

Machines as Strings

- For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)
- We will consider decision problems (language) whose inputs are Turing Machine (encoded as a binary string)

1.2 Diagonalization

The Diagonal Language

Definition 2. Define $L_d = \{M \mid M \not\in L(M)\}$. Thus, L_d is the collection of Turing machines (programs) M such that M does not halt and accept when given itself as input.

A non-Recursively Enumerable Language

Proposition 3. L_d is not recursively enumerable.

Proof. Recall that,

- Inputs are strings over $\{0,1\}$
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine

• In what follows, we will denote the *i*th binary string (in lexicographic order) as the number i. Thus, we can say $j \in L(i)$, which means that the Turing machine corresponding to *i*th binary string accepts the *j*th binary string.

Completing the proof

Diagonalization: Cantor

Proof (contd). We can organize all programs and inputs as a (infinite) matrix, where the (i, j)th Inputs \longrightarrow

			*							
			1	2	3	4	5	6	7	
entry is Y if and only if $j \in L(i)$.	TMs	1	N	N	Ν	N	N	N	Ν	
	\downarrow	2	\overline{N}	\mathbb{N}	N	N	N	N	N	
		3	Y	$\overline{ m N}$	$ \mathbf{Y} $	N	Y	Y	Y	
		4	N	Y	$\overline{ m N}$	$ \mathbf{Y} $	Y	N	N	
		5	N	Y	N	$\overline{\mathrm{Y}}$	$ \mathbf{Y} $	N	N	
		6	N	N	Y	N	$\overline{\mathrm{Y}}$	N	Y	

Suppose L_d is recognized by a Turing machine, which is the jth binary string. i.e., $L_d = L(j)$. But $j \in L_d$ iff $j \notin L(j)$!

Acceptor for L_d ?

Consider the following program

```
On input i
Run program i on i
Output ''yes'' if i does not accept i
Output ''no'' if i accepts i
```

Does the above program recognize L_d ? No, because it may never output "yes" if i does not halt on i.

Models for Decidable Languages

Question

Is there a machine model such that

- all programs in the model halt on all inputs, and
- for each problem decidable by a TM, there is a program in the model that decides it?

Models for Decidable Languages

Answer

There is no such model! Suppose there is a programming language in which all programs always halt. Programs in this language can be described by binary strings, and can be simulated by TMs. Consider the Turing Machine M_d

```
On input i
Run program i on i
Output ''yes'' if i does not accept i
Output ''no'' if i accepts i
```

 M_d always halts and solves a problem not solved by any program in our language! Inability to halt is essential to capture all computation.

1.3 The Universal Language

Recursively Enumerable but not Decidable

- L_d not recursively enumerable, and therefore not decidable. Are there languages that are recursively enumerable but not decidable?
- Yes, $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

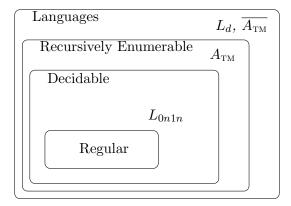
The Universal Language

Proposition 4. A_{TM} is r.e. but not decidable.

Proof. We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM M that always halts and $L(M) = A_{\text{TM}}$. Consider a TM D as follows:

```
On input i
Run M on input \langle i,i \rangle
Output ''yes'' if i rejects i
Output ''no'' if i accepts i
Observe that L(D) = L_d! But, L_d is not r.e. which gives us the contradiction.
```

A more complete Big Picture



2 Reductions

2.1 Informal Overview

Reductions

A *reduction* is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem *reduces* to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix
- The problem L_d reduces to the problem A_{TM} as follows: "To see if $w \in L_d$ check if $\langle w, w \rangle \in A_{\text{TM}}$."

Undecidability using Reductions

Proposition 5. Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

- On input w, apply reduction to transform w into an input w' for problem 2
- Run M on w', and use its answer.

Schematic View

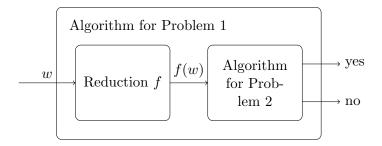


Figure 2: Reductions schematically

The Halting Problem

Proposition 6. The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof. We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x \operatorname{Run}\ M \ \text{on}\ x \operatorname{If}\ M \ \operatorname{accepts}\ \operatorname{then}\ \operatorname{halt}\ \operatorname{and}\ \operatorname{accept} \operatorname{If}\ M \ \operatorname{rejects}\ \operatorname{then}\ \operatorname{go}\ \operatorname{into}\ \operatorname{an}\ \operatorname{infinite}\ \operatorname{loop}
```

Observe that f(M) halts on input w if and only if M accepts w

The Halting Problem

Completing the proof

 $Proof\ (contd)$. Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H)= HALT. Consider the following program T

```
On input \langle M,w\rangle Construct program f(M) Run H on \langle f(M),w\rangle Accept if H accepts and reject if H rejects
```

T decides A_{TM} . But, A_{TM} is undecidable, which gives us the contradiction.

2.2 Definition and Properties

Mapping Reductions

Definition 7. A function $f: \Sigma^* \to \Sigma^*$ is *computable* if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Definition 8. A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

$$w \in A$$
 if and only if $f(w) \in B$

In this case, we say A is mapping/many-one reducible to B, and we denote it by $A \leq_m B$.

Convention

In this course, we will drop the adjective "mapping" or "many-one", and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition 9. If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof. Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w  \text{Compute } f(w)   \text{Run } M_B \text{ on } f(w)   \text{Accept if } M_B \text{ does and reject if } M_B \text{ rejects}
```

Reductions and non-r.e.

Corollary 10. If $A \leq_m B$ and A is not recursively enumerable then B is not recursively enumerable.

Reductions and Decidability

Proposition 11. If $A \leq_m B$ and B is decidable then A is decidable.

Proof. Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Corollary 12. If $A \leq_m B$ and A is undecidable then B is undecidable.