### CS 373: Theory of Computation

### Gul Agha Mahesh Viswanathan

University of Illinois, Urbana-Champaign

Fall 2010

Overview Expressive Power

# Grammars

### Definition

A grammar is  $G = (V, \Sigma, R, S)$ , where

- V is a finite set of variables/non-terminals
- Σ is a finite set of terminals
- $S \in V$  is the start symbol
- $R \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$  is a finite set of rules/productions

Overview Expressive Power

# Grammars

### Definition

A grammar is  $G = (V, \Sigma, R, S)$ , where

- V is a finite set of variables/non-terminals
- Σ is a finite set of terminals
- $S \in V$  is the start symbol
- $R \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$  is a finite set of rules/productions

We say  $\gamma_1 \alpha \gamma_2 \Rightarrow_G \gamma_1 \beta \gamma_2$  iff  $(\alpha \rightarrow \beta) \in R$ .

Overview Expressive Power

# Grammars

### Definition

A grammar is  $G = (V, \Sigma, R, S)$ , where

- V is a finite set of variables/non-terminals
- Σ is a finite set of terminals
- $S \in V$  is the start symbol
- $R \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$  is a finite set of rules/productions

- ( ∃ ) -

We say  $\gamma_1 \alpha \gamma_2 \Rightarrow_G \gamma_1 \beta \gamma_2$  iff  $(\alpha \to \beta) \in R$ . And  $L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G w \}$ 

Overview Expressive Power

# Example

### Example

Consider the grammar *G* with  $\Sigma = \{a\}$  with

The following are derivations in this grammar

$$S ext{ } \Rightarrow \$Ca \# \Rightarrow \$aaC \# \Rightarrow \$aaE \Rightarrow \$aEa \Rightarrow \$Eaa \Rightarrow aa$$

∃ >

< 17 ▶

Overview Expressive Power

# Example

### Example

Consider the grammar G with  $\Sigma = \{a\}$  with

The following are derivations in this grammar

$$S \Rightarrow Ca \# \Rightarrow aaC \# \Rightarrow aaE \Rightarrow aEa \Rightarrow Eaa \Rightarrow aa$$

$$\begin{array}{ll} S &\Rightarrow \$Ca\# \Rightarrow \$aaC\# \Rightarrow \$aaD\# \Rightarrow \$aDa\# \Rightarrow \$Daa\# \Rightarrow \$Caa\# \\ &\Rightarrow \$aaCa\# \Rightarrow \$aaaaC\# \Rightarrow \$aaaaE \Rightarrow \$aaaEa \Rightarrow \$aaEaa \\ &\Rightarrow \$aEaaa \Rightarrow \$Eaaaa \Rightarrow aaaa \end{array}$$

 $L(G) = \{a^i \mid i \text{ is a power of } 2\}$ 

Overview Expressive Power

### Grammars for each task

• What is the expressive power of these grammars?

P

Overview Expressive Power

### Grammars for each task



Noam Chomsky

- What is the expressive power of these grammars?
- Restricting the types of rules, allows one to describe different aspects of natural languages

Overview Expressive Power

### Grammars for each task



Noam Chomsky

- What is the expressive power of these grammars?
- Restricting the types of rules, allows one to describe different aspects of natural languages
- These grammars form a hierarchy

Overview Expressive Power

# Type 0 Grammars

### Definition

Type 0 grammars are those where the rules are of the form

 $\alpha \to \beta$ 

where  $\alpha, \beta \in (\Sigma \cup V)^*$ 

#### Example

Consider the grammar *G* with  $\Sigma = \{a\}$  with

Overview Expressive Power

< 17 ▶

### Expressive Power of Type 0 Grammars

#### Theorem

L is recursively enumerable iff there is a type 0 grammar G such that L = L(G).

Overview Expressive Power

### Expressive Power of Type 0 Grammars

#### Theorem

L is recursively enumerable iff there is a type 0 grammar G such that L = L(G).

Thus, type 0 grammars are as powerful as Turing machines.

Overview Expressive Power

< 17 ▶

- - E + - E +

э

# Recognizing Type 0 languages

#### Proposition

# If $G = (V, \Sigma, R, S)$ is a type 0 grammar then L(G) is recursively enumerable.



Overview Expressive Power

# Recognizing Type 0 languages

### Proposition

If  $G = (V, \Sigma, R, S)$  is a type 0 grammar then L(G) is recursively enumerable.

#### Proof.

We will show that L(G) is recognized by a 2-tape non-deterministic Turing machine M, with tape 1 storing the input w, and tape 2 used to construct a derivation of w from S.

Overview Expressive Power

æ

- ▲ 🗗 🕨 🔺 🖻 🕨 🔺 🖻 🕨

### Recognizing Type 0 Grammars

### Proof (contd).

Agha-Viswanathan CS373

Overview Expressive Power

∃ >

# Recognizing Type 0 Grammars

### Proof (contd).

• At any given time tape 2, stores the current string of the derivation; initial tape contains *S*.

Overview Expressive Power

# Recognizing Type 0 Grammars

### Proof (contd).

- At any given time tape 2, stores the current string of the derivation; initial tape contains *S*.
- To simulate the next derivation step, *M* will (nondeterministically) choose a rule to apply, scan from left to right and choose (nondeterministically) a position to apply the rule, replace the substring matching the LHS of the rule with the RHS to get the string at the next step of derivation.

Overview Expressive Power

# Recognizing Type 0 Grammars

### Proof (contd).

- At any given time tape 2, stores the current string of the derivation; initial tape contains *S*.
- To simulate the next derivation step, *M* will (nondeterministically) choose a rule to apply, scan from left to right and choose (nondeterministically) a position to apply the rule, replace the substring matching the LHS of the rule with the RHS to get the string at the next step of derivation.
- If tape 2 contains only terminal symbols, then *M* will check to see if it matches tape 1. If so, the input is accepted, else it is rejected.

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

### Proof.

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

### Proof.

Let M be a Turing machine recognizing L. The grammar G will simulate M "backwards" starting from an accepting configuration.

• A string  $\gamma$  in the derivation will encode a configuration of M

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

### Proof.

- A string  $\gamma$  in the derivation will encode a configuration of  ${\it M}$
- G has rules such that  $\gamma_1 \Rightarrow \gamma_2$  iff  $\gamma_2 \vdash_M \gamma_1$

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

### Proof.

- A string  $\gamma$  in the derivation will encode a configuration of M
- G has rules such that  $\gamma_1 \Rightarrow \gamma_2$  iff  $\gamma_2 \vdash_M \gamma_1$
- The rules of S will generate an accepting configuration of M

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

### Proof.

- A string  $\gamma$  in the derivation will encode a configuration of M
- G has rules such that  $\gamma_1 \Rightarrow \gamma_2$  iff  $\gamma_2 \vdash_M \gamma_1$
- The rules of S will generate an accepting configuration of M
- Once (some) initial configuration  $q_0 w$  is generated, rules in G will erase symbols to produce the terminal w.

Overview Expressive Power

# Describing R.E. Languages

### Proposition

If L is recursively enumerable, then there is a type 0 grammar G such that L = L(G).

### Proof.

Let M be a Turing machine recognizing L. The grammar G will simulate M "backwards" starting from an accepting configuration.

- A string  $\gamma$  in the derivation will encode a configuration of  ${\it M}$
- G has rules such that  $\gamma_1 \Rightarrow \gamma_2$  iff  $\gamma_2 \vdash_M \gamma_1$
- The rules of S will generate an accepting configuration of M
- Once (some) initial configuration  $q_0 w$  is generated, rules in *G* will erase symbols to produce the terminal *w*.

Details in the notes.

Context Sensitive Grammars Regular Grammars Context Free Grammars

3

# Type 1 Grammars

The rules in a type 1 grammar are of the form

 $\alpha \to \beta$ 

where  $\alpha, \beta \in (\Sigma \cup V)^*$  and  $|\alpha| \leq |\beta|$ .

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 1 Grammars

The rules in a type 1 grammar are of the form

$$\alpha \to \beta$$

where  $\alpha, \beta \in (\Sigma \cup V)^*$  and  $|\alpha| \leq |\beta|$ . In every derivation, the length of the string never decreases.

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 1 Grammars

The rules in a type 1 grammar are of the form

$$\alpha \rightarrow \beta$$

where  $\alpha, \beta \in (\Sigma \cup V)^*$  and  $|\alpha| \leq |\beta|$ .

In every derivation, the length of the string never decreases.

#### Example

Consider the grammar G with  $\Sigma = \{a, b, c\}$ ,  $V = \{S, B, C, H\}$  and

| $S  ightarrow aSBC \mid aBC$ | CB  ightarrow HB | $HB \rightarrow HC$ |
|------------------------------|------------------|---------------------|
| $HC \rightarrow BC$          | aB 	o ab         | bB  ightarrow bb    |
| bC  ightarrow bc             | cC  ightarrow cc |                     |

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 1 Grammars

The rules in a type 1 grammar are of the form

$$\alpha \rightarrow \beta$$

where  $\alpha, \beta \in (\Sigma \cup V)^*$  and  $|\alpha| \leq |\beta|$ .

In every derivation, the length of the string never decreases.

#### Example

Consider the grammar G with  $\Sigma = \{a, b, c\}$ ,  $V = \{S, B, C, H\}$  and

| $S  ightarrow aSBC \mid aBC$ | CB  ightarrow HB | $HB \rightarrow HC$ |
|------------------------------|------------------|---------------------|
| $HC \rightarrow BC$          | aB 	o ab         | bB  ightarrow bb    |
| bC  ightarrow bc             | cC  ightarrow cc |                     |

 $L(G) = \{a^n b^n c^n \mid n \ge 0\}$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Context Sensitivity

#### Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form) G' such that L(G) = L(G') and all the rules of G' are of the form

 $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$ 

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Context Sensitivity

#### Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form) G' such that L(G) = L(G') and all the rules of G' are of the form

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ So, rules of G' replace a variable A by  $\beta$  in the context  $\alpha_1 \Box \alpha_2$ .

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Context Sensitivity

### Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form) G' such that L(G) = L(G') and all the rules of G' are of the form

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ So, rules of G' replace a variable A by  $\beta$  in the context  $\alpha_1 \Box \alpha_2$ . Thus, the class of language described by Type 1 grammars are called context-sensitive languages.

Context Sensitive Grammars Regular Grammars Context Free Grammars

### Expressive Power of Context Sensitive Languages

### What languages can be described by Type 1 grammars?



Context Sensitive Grammars Regular Grammars Context Free Grammars

### Expressive Power of Context Sensitive Languages

### What languages can be described by Type 1 grammars?

• It turns out to be quite a lot!

Context Sensitive Grammars Regular Grammars Context Free Grammars

### Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?

- It turns out to be quite a lot!
- To say exactly, we need to define a new class of machines ....

Context Sensitive Grammars Regular Grammars Context Free Grammars

### Linear Bounded Automata



#### Definition

A linear bounded automaton is a restricted Turing machine where the tape head is not permitted to move beyond the portion of the tape containing the input.

• If the machine tries to move the head off either end of the input, the head stays where it is.
Context Sensitive Grammars Regular Grammars Context Free Grammars

∃ >

### LBA and Type 1 Grammars

#### Theorem

If G is a Type 1 grammar then there is a linear bounded automaton M such that L(G) = L(M).

Context Sensitive Grammars Regular Grammars Context Free Grammars

### LBA and Type 1 Grammars

#### Theorem

If G is a Type 1 grammar then there is a linear bounded automaton M such that L(G) = L(M). If M is a linear bounded automaton then there is a Type 1 grammar G such that L(M) = L(G).

Context Sensitive Grammars Regular Grammars Context Free Grammars

# LBA and Type 1 Grammars

### Theorem

If G is a Type 1 grammar then there is a linear bounded automaton M such that L(G) = L(M). If M is a linear bounded automaton then there is a Type 1 grammar G such that L(M) = L(G).

#### Proof.

Translations between TMs and Type 0 grammars, when carried out on Type 1 grammars and LBAs, prove this theorem.  $\hfill \Box$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Decidability of LBAs

#### Theorem

If M is a linear bounded automaton, then L(M) is decidable.

### Proof.

• The number of configurations of *M* on an input of length *n* is at most *snt<sup>n</sup>*, where *s* is the number of states of *M* and *t* is the size of the tape alphabet

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Decidability of LBAs

#### Theorem

If M is a linear bounded automaton, then L(M) is decidable.

### Proof.

• The number of configurations of *M* on an input of length *n* is at most *snt<sup>n</sup>*, where *s* is the number of states of *M* and *t* is the size of the tape alphabet

• If *M* accepts *w* of length *n* then *M* does so within *snt<sup>n</sup>* steps.

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Decidability of LBAs

#### Theorem

If M is a linear bounded automaton, then L(M) is decidable.

### Proof.

• The number of configurations of *M* on an input of length *n* is at most *snt<sup>n</sup>*, where *s* is the number of states of *M* and *t* is the size of the tape alphabet

- If *M* accepts *w* of length *n* then *M* does so within *snt<sup>n</sup>* steps.

Context Sensitive Grammars

# Decidability of LBAs

#### Theorem

If M is a linear bounded automaton, then L(M) is decidable.

### Proof.

- The number of configurations of M on an input of length n is at most snt<sup>n</sup>, where s is the number of states of M and t is the size of the tape alphabet
  - Any configuration is state + head position + contents of the tape. The observation follows since the tape has at most nsymbols.
- If M accepts w of length n then M does so within snt<sup>n</sup> steps.
  - Any computation of length more than *snt<sup>n</sup>* is "cycling" and so cannot accept w  $\cdots \rightarrow$

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Decidability of LBAs

### Proof (contd).

Consider the following TM D that always halts and decides L(M)

On input w Run M on w for  $s|w|t^{|w|}$  steps If M accepts w then accept else reject

Context Sensitive Grammars Regular Grammars Context Free Grammars

### Model for Decidability?

### Do LBAs recognize all decidable languages?

Context Sensitive Grammars Regular Grammars Context Free Grammars

### Model for Decidability?

### Do LBAs recognize all decidable languages?

• LBAs recognize many but not all decidable languages.

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Model for Decidability?

Do LBAs recognize all decidable languages?

- LBAs recognize many but not all decidable languages.
- Decidable languages not recognized by LBAs can be found by diagonalization.

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Diagonal LBA Language

Recall that every LBA can be coded as a binary string, and every binary string can be thought of as an LBA. We now consider only LBAs whose input alphabet is  $\{0, 1\}$ .

#### Theorem

 $L_{d,LBA} = \{M \mid M \text{ is a LBA and } M \notin L(M)\}$  is decidable but not context sensitive, i.e., recognized by an LBA.

Context Sensitive Grammars Regular Grammars Context Free Grammars

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

# $L_{d,\text{LBA}}$ is decidable



Agha-Viswanathan CS

Context Sensitive Grammars Regular Grammars Context Free Grammars

# $L_{d,\text{LBA}}$ is decidable

```
The following program M decides L_{d,LBA}
On input x
Check if x accepts x
If x accepts x then reject else accept
```

Context Sensitive Grammars Regular Grammars Context Free Grammars

# $L_{d,\text{LBA}}$ is decidable

```
The following program M decides L_{d,LBA}
On input x
Check if x accepts x
If x accepts x then reject else accept
```

Since languages recognized by LBAs are decidable, the step to check if x accepts x will halt.

Context Sensitive Grammars Regular Grammars Context Free Grammars

- ∢ ≣ ▶

-

< 17 ▶

э

# $L_{d,\text{LBA}}$ is not context sensitive

• Suppose  $L_{d, \text{LBA}}$  were recognized by a LBA, say M.

Context Sensitive Grammars Regular Grammars Context Free Grammars

< 17 ▶

글 🖌 🖌 글 🕨

3

# $L_{d,\text{LBA}}$ is not context sensitive

• Suppose  $L_{d,LBA}$  were recognized by a LBA, say M.

• Now, if 
$$M \in L_{d, \text{LBA}} = L(M)$$

Context Sensitive Grammars Regular Grammars Context Free Grammars

- Suppose  $L_{d,LBA}$  were recognized by a LBA, say M.
- Now, if  $M \in L_{d, \text{LBA}} = L(M)$  then M is accepted by M,

Context Sensitive Grammars Regular Grammars Context Free Grammars

- Suppose  $L_{d,LBA}$  were recognized by a LBA, say M.
- Now, if M ∈ L<sub>d,LBA</sub> = L(M) then M is accepted by M, which means M ∉ L<sub>d,LBA</sub>!

Context Sensitive Grammars Regular Grammars Context Free Grammars

- Suppose  $L_{d,LBA}$  were recognized by a LBA, say M.
- Now, if M ∈ L<sub>d,LBA</sub> = L(M) then M is accepted by M, which means M ∉ L<sub>d,LBA</sub>!
- Conversely, if  $M \notin L_{d,LBA} = L(M)$

Context Sensitive Grammars Regular Grammars Context Free Grammars

- Suppose  $L_{d,\text{LBA}}$  were recognized by a LBA, say M.
- Now, if M ∈ L<sub>d,LBA</sub> = L(M) then M is accepted by M, which means M ∉ L<sub>d,LBA</sub>!
- Conversely, if  $M \not\in L_{d,\text{LBA}} = L(M)$  then M is not accepted by M

Context Sensitive Grammars Regular Grammars Context Free Grammars

- Suppose  $L_{d,LBA}$  were recognized by a LBA, say M.
- Now, if M ∈ L<sub>d,LBA</sub> = L(M) then M is accepted by M, which means M ∉ L<sub>d,LBA</sub>!
- Conversely, if M ∉ L<sub>d,LBA</sub> = L(M) then M is not accepted by M which means M ∈ L<sub>d,LBA</sub>!

Context Sensitive Grammars Regular Grammars Context Free Grammars

< 17 ▶

# Type 3 Grammars

The rules in a type 3 grammar are of the form

$$A \rightarrow aB$$
 or  $A \rightarrow a$ 

where  $A, B \in V$  and  $a \in \Sigma \cup \{\epsilon\}$ .

Context Sensitive Grammars Regular Grammars Context Free Grammars

A B + A B +

< A ▶

# Type 3 Grammars

### The rules in a type 3 grammar are of the form

 $A \rightarrow aB$  or  $A \rightarrow a$ 

where  $A, B \in V$  and  $a \in \Sigma \cup \{\epsilon\}$ .

#### Example

Consider the grammar over  $\Sigma=\{0,1\}$  with rules

 $S \rightarrow 1S \mid 0A$   $A \rightarrow \epsilon \mid 1A \mid 0S$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

- 4 同 6 4 日 6 4 日 6

# Type 3 Grammars

### The rules in a type 3 grammar are of the form

 $A \rightarrow aB$  or  $A \rightarrow a$ 

where  $A, B \in V$  and  $a \in \Sigma \cup \{\epsilon\}$ .

#### Example

Consider the grammar over  $\Sigma = \{0, 1\}$  with rules

 $S \rightarrow 1S \mid 0A$   $A \rightarrow \epsilon \mid 1A \mid 0S$ 

 $L(G) = \{w \in \{0,1\}^* \mid w \text{ has an odd number of 0s}\}$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).



Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

#### Proof.

Let  $G = (V, \Sigma, R, S)$  be a type 3 grammar. Consider the NFA  $M = (Q, \Sigma, \delta, q_0, F)$  where

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

#### Proof.

Let  $G = (V, \Sigma, R, S)$  be a type 3 grammar. Consider the NFA  $M = (Q, \Sigma, \delta, q_0, F)$  where

• 
$$Q = V \cup \{q_F\}$$
, where  $q_F \notin V$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

#### Proof.

Let  $G = (V, \Sigma, R, S)$  be a type 3 grammar. Consider the NFA  $M = (Q, \Sigma, \delta, q_0, F)$  where

• 
$$Q = V \cup \{q_F\}$$
, where  $q_F 
ot\in V$ 

• 
$$q_0 = S$$

Agha-Viswanathan CS373

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

#### Proof.

Let  $G = (V, \Sigma, R, S)$  be a type 3 grammar. Consider the NFA  $M = (Q, \Sigma, \delta, q_0, F)$  where

• 
$$Q = V \cup \{q_F\}$$
, where  $q_F \notin V$ 

• 
$$q_0 = S$$

• 
$$F = \{q_F\}$$

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

#### Proof.

Let  $G = (V, \Sigma, R, S)$  be a type 3 grammar. Consider the NFA  $M = (Q, \Sigma, \delta, q_0, F)$  where

- $Q = V \cup \{q_F\}$ , where  $q_F \notin V$
- $q_0 = S$
- $F = \{q_F\}$
- $\delta(A, a) = \{B \mid \text{if } A \to aB \in R\} \cup \{q_F \mid \text{if } A \to a \in R\} \text{ for } A \in V.$ And  $\delta(q_F, a) = \emptyset$  for all a.

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 3 Grammars and Regularity

### Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

#### Proof.

Let  $G = (V, \Sigma, R, S)$  be a type 3 grammar. Consider the NFA  $M = (Q, \Sigma, \delta, q_0, F)$  where

• 
$$Q = V \cup \{q_F\}$$
, where  $q_F \notin V$ 

• 
$$q_0 = S$$

• 
$$F = \{q_F\}$$

•  $\delta(A, a) = \{B \mid \text{if } A \to aB \in R\} \cup \{q_F \mid \text{if } A \to a \in R\} \text{ for } A \in V.$ And  $\delta(q_F, a) = \emptyset$  for all a.

L(M) = L(G) as  $\forall A \in V$ ,  $\forall w \in \Sigma^*$ ,  $A \stackrel{*}{\Rightarrow}_G w$  iff  $q_F \in \hat{\Delta}(A, w)$ . ...

Context Sensitive Grammars Regular Grammars Context Free Grammars

- 4 🗗 ▶

-∢ ≣ ▶

### Type 3 Grammars and Regularity NFA to Grammars

### Proof (contd).

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a NFA recognizing L. Consider  $G = (V, \Sigma, R, S)$  where

Context Sensitive Grammars Regular Grammars Context Free Grammars

- ∢ ⊒ →

< </>
</>
</l>

э

### Type 3 Grammars and Regularity NFA to Grammars

### Proof (contd).

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a NFA recognizing L. Consider  $G = (V, \Sigma, R, S)$  where • V = Q

Context Sensitive Grammars Regular Grammars Context Free Grammars

- 4 同 6 4 日 6 4 日 6

э

### Type 3 Grammars and Regularity NFA to Grammars

### Proof (contd).

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a NFA recognizing L. Consider  $G = (V, \Sigma, R, S)$  where • V = Q

• 
$$S = q_0$$

Context Sensitive Grammars Regular Grammars Context Free Grammars

### Type 3 Grammars and Regularity NFA to Grammars

### Proof (contd).

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a NFA recognizing L. Consider  $G = (V, \Sigma, R, S)$  where

- V = Q
- $S = q_0$
- $q_1 \rightarrow aq_2 \in R$  iff  $q_2 \in \delta(q_1, a)$  and  $q \rightarrow \epsilon \in R$  iff  $q \in F$ .
Context Sensitive Grammars Regular Grammars Context Free Grammars

## Type 3 Grammars and Regularity NFA to Grammars

### Proof (contd).

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a NFA recognizing L. Consider  $G = (V, \Sigma, R, S)$  where

• V = Q

• 
$$S = q_0$$

•  $q_1 \rightarrow aq_2 \in R$  iff  $q_2 \in \delta(q_1, a)$  and  $q \rightarrow \epsilon \in R$  iff  $q \in F$ . We can show, for any  $q, q' \in Q$  and  $w \in \Sigma^*$ ,  $q' \in \hat{\Delta}(q, w)$  iff  $q \stackrel{*}{\Rightarrow}_G wq'$ . Thus, L(M) = L(G).

Context Sensitive Grammars Regular Grammars Context Free Grammars

- ∢ ≣ ▶

-

< 17 ▶

э

# Type 2 Grammars

The rules in a type 2 grammar are of the form

 $A\to\beta$ 

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ .

Context Sensitive Grammars Regular Grammars Context Free Grammars

# Type 2 Grammars

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ .

Type 2 grammars describe context-free languages, which we will study next in this class.

Context Sensitive Grammars Regular Grammars Context Free Grammars

< □ > < 同 >

A B > A B >

# Type 2 Grammars

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ .

Type 2 grammars describe context-free languages, which we will study next in this class.

### Example

Consider *G* over  $\Sigma = \{0, 1\}$  with rules

 $S \rightarrow \epsilon \mid \mathbf{0S1}$ 

Context Sensitive Grammars Regular Grammars Context Free Grammars

-∢ ≣ →

# Type 2 Grammars

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where  $A \in V$  and  $\beta \in (\Sigma \cup V)^*$ .

Type 2 grammars describe context-free languages, which we will study next in this class.

### Example

Consider G over  $\Sigma = \{0,1\}$  with rules

$$S \rightarrow \epsilon \mid 0S1$$

 $L(G) = \{0^n 1^n \mid n \ge 0\}$ 

## Grammars and their Languages

| Grammar | Rules                                                   | Languages              |
|---------|---------------------------------------------------------|------------------------|
| Type 3  | A  ightarrow aB or $A  ightarrow a$                     | Regular                |
| Type 2  | A  ightarrow lpha                                       | Context Free           |
| Type 1  | $\alpha \rightarrow \beta$ with $ \alpha  \leq  \beta $ | Context Sensitive      |
| Type 0  | $\alpha \rightarrow \beta$                              | Recursively Enumerable |

In the above table,  $\alpha, \beta \in (\Sigma \cup V)^*$ ,  $A, B \in V$  and  $a \in \Sigma \cup \{\epsilon\}$ .

# Chomsky Hierarchy

### Theorem

*Type 0, Type 1, Type 2, and Type 3 grammars define a* strict *hierarchy of formal languages.* 



- ₹ 🖬 🕨

< 17 ▶

э

# Chomsky Hierarchy

#### Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

### Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

# Chomsky Hierarchy

#### Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

### Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar. Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar

# Chomsky Hierarchy

### Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

### Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar ( $L = \{0^n 1^n \mid n \ge 0\}$ ),

# Chomsky Hierarchy

### Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

### Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar ( $L = \{0^n 1^n \mid n \ge 0\}$ ), a language that has a Type 1 grammar but no Type 2 grammar

# Chomsky Hierarchy

### Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

### Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar ( $L = \{0^n 1^n \mid n \ge 0\}$ ), a language that has a Type 1 grammar but no Type 2 grammar ( $L = \{a^n b^n c^n \mid n \ge 0\}$ ),

# Chomsky Hierarchy

### Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

### Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar ( $L = \{0^n 1^n \mid n \ge 0\}$ ), a language that has a Type 1 grammar but no Type 2 grammar ( $L = \{a^n b^n c^n \mid n \ge 0\}$ ), and a language with a Type 0 grammar but no Type 1 grammar.

## Overview of Languages



・ロン ・部 と ・ ヨ と ・ ヨ と …

æ