
Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

University of Illinois, Urbana-Champaign

Fall 2010

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Grammars

Definition

A grammar is G = (V ,Σ,R,S), where

V is a finite set of variables/non-terminals

Σ is a finite set of terminals

S ∈ V is the start symbol

R ⊆ (Σ ∪ V)∗ × (Σ ∪ V)∗ is a finite set of rules/productions

We say γ1αγ2 ⇒G γ1βγ2 iff (α→ β) ∈ R. And

L(G) = {w ∈ Σ∗ | S ∗⇒G w}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Grammars

Definition

A grammar is G = (V ,Σ,R,S), where

V is a finite set of variables/non-terminals

Σ is a finite set of terminals

S ∈ V is the start symbol

R ⊆ (Σ ∪ V)∗ × (Σ ∪ V)∗ is a finite set of rules/productions

We say γ1αγ2 ⇒G γ1βγ2 iff (α→ β) ∈ R.

And

L(G) = {w ∈ Σ∗ | S ∗⇒G w}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Grammars

Definition

A grammar is G = (V ,Σ,R,S), where

V is a finite set of variables/non-terminals

Σ is a finite set of terminals

S ∈ V is the start symbol

R ⊆ (Σ ∪ V)∗ × (Σ ∪ V)∗ is a finite set of rules/productions

We say γ1αγ2 ⇒G γ1βγ2 iff (α→ β) ∈ R. And

L(G) = {w ∈ Σ∗ | S ∗⇒G w}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Example

Example

Consider the grammar G with Σ = {a} with

S → $Ca# | a | ε Ca→ aaC $D → $C
C #→ D# | E aD → Da aE → Ea
$E → ε

The following are derivations in this grammar

S ⇒ $Ca# ⇒ $aaC# ⇒ $aaE ⇒ $aEa ⇒ $Eaa ⇒ aa

S ⇒ $Ca# ⇒ $aaC# ⇒ $aaD# ⇒ $aDa# ⇒ $Daa# ⇒ $Caa#
⇒ $aaCa# ⇒ $aaaaC# ⇒ $aaaaE ⇒ $aaaEa ⇒ $aaEaa
⇒ $aEaaa ⇒ $Eaaaa ⇒ aaaa

L(G) = {ai | i is a power of 2}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Example

Example

Consider the grammar G with Σ = {a} with

S → $Ca# | a | ε Ca→ aaC $D → $C
C #→ D# | E aD → Da aE → Ea
$E → ε

The following are derivations in this grammar

S ⇒ $Ca# ⇒ $aaC# ⇒ $aaE ⇒ $aEa ⇒ $Eaa ⇒ aa

S ⇒ $Ca# ⇒ $aaC# ⇒ $aaD# ⇒ $aDa# ⇒ $Daa# ⇒ $Caa#
⇒ $aaCa# ⇒ $aaaaC# ⇒ $aaaaE ⇒ $aaaEa ⇒ $aaEaa
⇒ $aEaaa ⇒ $Eaaaa ⇒ aaaa

L(G) = {ai | i is a power of 2}
Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Grammars for each task

Noam Chomsky

What is the expressive power of these
grammars?

Restricting the types of rules, allows one
to describe different aspects of natural
languages

These grammars form a hierarchy

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Grammars for each task

Noam Chomsky

What is the expressive power of these
grammars?

Restricting the types of rules, allows one
to describe different aspects of natural
languages

These grammars form a hierarchy

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Grammars for each task

Noam Chomsky

What is the expressive power of these
grammars?

Restricting the types of rules, allows one
to describe different aspects of natural
languages

These grammars form a hierarchy

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Type 0 Grammars

Definition

Type 0 grammars are those where the rules are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗

Example

Consider the grammar G with Σ = {a} with

S → $Ca# | a | ε Ca→ aaC $D → $C
C #→ D# | E aD → Da aE → Ea
$E → ε

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Expressive Power of Type 0 Grammars

Theorem

L is recursively enumerable iff there is a type 0 grammar G such
that L = L(G).

Thus, type 0 grammars are as powerful as Turing machines.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Expressive Power of Type 0 Grammars

Theorem

L is recursively enumerable iff there is a type 0 grammar G such
that L = L(G).

Thus, type 0 grammars are as powerful as Turing machines.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Recognizing Type 0 languages

Proposition

If G = (V ,Σ,R,S) is a type 0 grammar then L(G) is recursively
enumerable.

Proof.

We will show that L(G) is recognized by a 2-tape
non-deterministic Turing machine M, with tape 1 storing the input
w , and tape 2 used to construct a derivation of w from S . ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Recognizing Type 0 languages

Proposition

If G = (V ,Σ,R,S) is a type 0 grammar then L(G) is recursively
enumerable.

Proof.

We will show that L(G) is recognized by a 2-tape
non-deterministic Turing machine M, with tape 1 storing the input
w , and tape 2 used to construct a derivation of w from S . ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

At any given time tape 2, stores the current string of the
derivation; initial tape contains S .

To simulate the next derivation step, M will
(nondeterministically) choose a rule to apply, scan from left to
right and choose (nondeterministically) a position to apply the
rule, replace the substring matching the LHS of the rule with
the RHS to get the string at the next step of derivation.

If tape 2 contains only terminal symbols, then M will check to
see if it matches tape 1. If so, the input is accepted, else it is
rejected. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

At any given time tape 2, stores the current string of the
derivation; initial tape contains S .

To simulate the next derivation step, M will
(nondeterministically) choose a rule to apply, scan from left to
right and choose (nondeterministically) a position to apply the
rule, replace the substring matching the LHS of the rule with
the RHS to get the string at the next step of derivation.

If tape 2 contains only terminal symbols, then M will check to
see if it matches tape 1. If so, the input is accepted, else it is
rejected. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

At any given time tape 2, stores the current string of the
derivation; initial tape contains S .

To simulate the next derivation step, M will
(nondeterministically) choose a rule to apply, scan from left to
right and choose (nondeterministically) a position to apply the
rule, replace the substring matching the LHS of the rule with
the RHS to get the string at the next step of derivation.

If tape 2 contains only terminal symbols, then M will check to
see if it matches tape 1. If so, the input is accepted, else it is
rejected. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

At any given time tape 2, stores the current string of the
derivation; initial tape contains S .

To simulate the next derivation step, M will
(nondeterministically) choose a rule to apply, scan from left to
right and choose (nondeterministically) a position to apply the
rule, replace the substring matching the LHS of the rule with
the RHS to get the string at the next step of derivation.

If tape 2 contains only terminal symbols, then M will check to
see if it matches tape 1. If so, the input is accepted, else it is
rejected. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes.

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes.

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes.

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes.

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes.

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes.

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview
Expressive Power

Describing R.E. Languages

Proposition

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

A string γ in the derivation will encode a configuration of M

G has rules such that γ1 ⇒ γ2 iff γ2 `M γ1

The rules of S will generate an accepting configuration of M

Once (some) initial configuration q0w is generated, rules in G
will erase symbols to produce the terminal w .

Details in the notes. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗ and |α| ≤ |β|.

In every derivation, the length of the string never decreases.

Example

Consider the grammar G with Σ = {a, b, c}, V = {S ,B,C ,H} and

S → aSBC | aBC CB → HB HB → HC
HC → BC aB → ab bB → bb
bC → bc cC → cc

L(G) = {anbncn | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗ and |α| ≤ |β|.
In every derivation, the length of the string never decreases.

Example

Consider the grammar G with Σ = {a, b, c}, V = {S ,B,C ,H} and

S → aSBC | aBC CB → HB HB → HC
HC → BC aB → ab bB → bb
bC → bc cC → cc

L(G) = {anbncn | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗ and |α| ≤ |β|.
In every derivation, the length of the string never decreases.

Example

Consider the grammar G with Σ = {a, b, c}, V = {S ,B,C ,H} and

S → aSBC | aBC CB → HB HB → HC
HC → BC aB → ab bB → bb
bC → bc cC → cc

L(G) = {anbncn | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗ and |α| ≤ |β|.
In every derivation, the length of the string never decreases.

Example

Consider the grammar G with Σ = {a, b, c}, V = {S ,B,C ,H} and

S → aSBC | aBC CB → HB HB → HC
HC → BC aB → ab bB → bb
bC → bc cC → cc

L(G) = {anbncn | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G , there is a grammar (in normal form)
G ′ such that L(G) = L(G ′) and all the rules of G ′ are of the form

α1Aα2 → α1βα2

where A ∈ V and β ∈ (Σ ∪ V)∗

So, rules of G ′ replace a variable A by β in the context α1�α2.
Thus, the class of language described by Type 1 grammars are
called context-sensitive languages.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G , there is a grammar (in normal form)
G ′ such that L(G) = L(G ′) and all the rules of G ′ are of the form

α1Aα2 → α1βα2

where A ∈ V and β ∈ (Σ ∪ V)∗

So, rules of G ′ replace a variable A by β in the context α1�α2.

Thus, the class of language described by Type 1 grammars are
called context-sensitive languages.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G , there is a grammar (in normal form)
G ′ such that L(G) = L(G ′) and all the rules of G ′ are of the form

α1Aα2 → α1βα2

where A ∈ V and β ∈ (Σ ∪ V)∗

So, rules of G ′ replace a variable A by β in the context α1�α2.
Thus, the class of language described by Type 1 grammars are
called context-sensitive languages.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?

It turns out to be quite a lot!

To say exactly, we need to define a new class of machines . . .

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?

It turns out to be quite a lot!

To say exactly, we need to define a new class of machines . . .

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?

It turns out to be quite a lot!

To say exactly, we need to define a new class of machines . . .

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Linear Bounded Automata

X1 X2 · · · Xn

finite-state
control

tape

head

Definition

A linear bounded automaton is a restricted Turing machine where
the tape head is not permitted to move beyond the portion of the
tape containing the input.

If the machine tries to move the head off either end of the
input, the head stays where it is.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

LBA and Type 1 Grammars

Theorem

If G is a Type 1 grammar then there is a linear bounded
automaton M such that L(G) = L(M).

If M is a linear bounded automaton then there is a Type 1
grammar G such that L(M) = L(G).

Proof.

Translations between TMs and Type 0 grammars, when carried out
on Type 1 grammars and LBAs, prove this theorem. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

LBA and Type 1 Grammars

Theorem

If G is a Type 1 grammar then there is a linear bounded
automaton M such that L(G) = L(M).
If M is a linear bounded automaton then there is a Type 1
grammar G such that L(M) = L(G).

Proof.

Translations between TMs and Type 0 grammars, when carried out
on Type 1 grammars and LBAs, prove this theorem. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

LBA and Type 1 Grammars

Theorem

If G is a Type 1 grammar then there is a linear bounded
automaton M such that L(G) = L(M).
If M is a linear bounded automaton then there is a Type 1
grammar G such that L(M) = L(G).

Proof.

Translations between TMs and Type 0 grammars, when carried out
on Type 1 grammars and LBAs, prove this theorem. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Decidability of LBAs

Theorem

If M is a linear bounded automaton, then L(M) is decidable.

Proof.

The number of configurations of M on an input of length n is
at most sntn, where s is the number of states of M and t is
the size of the tape alphabet

Any configuration is state + head position + contents of the
tape. The observation follows since the tape has at most n
symbols.

If M accepts w of length n then M does so within sntn steps.

Any computation of length more than sntn is “cycling” and so
cannot accept w ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Decidability of LBAs

Theorem

If M is a linear bounded automaton, then L(M) is decidable.

Proof.

The number of configurations of M on an input of length n is
at most sntn, where s is the number of states of M and t is
the size of the tape alphabet

Any configuration is state + head position + contents of the
tape. The observation follows since the tape has at most n
symbols.

If M accepts w of length n then M does so within sntn steps.

Any computation of length more than sntn is “cycling” and so
cannot accept w ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Decidability of LBAs

Theorem

If M is a linear bounded automaton, then L(M) is decidable.

Proof.

The number of configurations of M on an input of length n is
at most sntn, where s is the number of states of M and t is
the size of the tape alphabet

Any configuration is state + head position + contents of the
tape. The observation follows since the tape has at most n
symbols.

If M accepts w of length n then M does so within sntn steps.

Any computation of length more than sntn is “cycling” and so
cannot accept w ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Decidability of LBAs

Theorem

If M is a linear bounded automaton, then L(M) is decidable.

Proof.

The number of configurations of M on an input of length n is
at most sntn, where s is the number of states of M and t is
the size of the tape alphabet

Any configuration is state + head position + contents of the
tape. The observation follows since the tape has at most n
symbols.

If M accepts w of length n then M does so within sntn steps.

Any computation of length more than sntn is “cycling” and so
cannot accept w ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Decidability of LBAs

Proof (contd).

Consider the following TM D that always halts and decides L(M)

On input w

Run M on w for s|w |t |w | steps
If M accepts w then accept else reject

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Model for Decidability?

Do LBAs recognize all decidable languages?

LBAs recognize many but not all decidable languages.

Decidable languages not recognized by LBAs can be found by
diagonalization.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Model for Decidability?

Do LBAs recognize all decidable languages?

LBAs recognize many but not all decidable languages.

Decidable languages not recognized by LBAs can be found by
diagonalization.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Model for Decidability?

Do LBAs recognize all decidable languages?

LBAs recognize many but not all decidable languages.

Decidable languages not recognized by LBAs can be found by
diagonalization.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Diagonal LBA Language

Recall that every LBA can be coded as a binary string, and every
binary string can be thought of as an LBA. We now consider only
LBAs whose input alphabet is {0, 1}.

Theorem

Ld ,lba = {M |M is a LBA and M 6∈ L(M)} is decidable but not
context sensitive, i.e., recognized by an LBA.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is decidable

The following program M decides Ld ,lba

On input x
Check if x accepts x
If x accepts x then reject else accept

Since languages recognized by LBAs are decidable, the step to
check if x accepts x will halt.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is decidable

The following program M decides Ld ,lba

On input x
Check if x accepts x
If x accepts x then reject else accept

Since languages recognized by LBAs are decidable, the step to
check if x accepts x will halt.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is decidable

The following program M decides Ld ,lba

On input x
Check if x accepts x
If x accepts x then reject else accept

Since languages recognized by LBAs are decidable, the step to
check if x accepts x will halt.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M) then M is accepted by M, which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M) then M is not accepted by
M which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M)

then M is accepted by M, which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M) then M is not accepted by
M which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M) then M is accepted by M,

which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M) then M is not accepted by
M which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M) then M is accepted by M, which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M) then M is not accepted by
M which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M) then M is accepted by M, which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M)

then M is not accepted by
M which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M) then M is accepted by M, which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M) then M is not accepted by
M

which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Ld ,lba is not context sensitive

Suppose Ld ,lba were recognized by a LBA, say M.

Now, if M ∈ Ld ,lba = L(M) then M is accepted by M, which
means M 6∈ Ld ,lba!

Conversely, if M 6∈ Ld ,lba = L(M) then M is not accepted by
M which means M ∈ Ld ,lba!

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars

The rules in a type 3 grammar are of the form

A→ aB or A→ a

where A,B ∈ V and a ∈ Σ ∪ {ε}.

Example

Consider the grammar over Σ = {0, 1} with rules

S → 1S | 0A A→ ε | 1A | 0S

L(G) = {w ∈ {0, 1}∗ | w has an odd number of 0s}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars

The rules in a type 3 grammar are of the form

A→ aB or A→ a

where A,B ∈ V and a ∈ Σ ∪ {ε}.

Example

Consider the grammar over Σ = {0, 1} with rules

S → 1S | 0A A→ ε | 1A | 0S

L(G) = {w ∈ {0, 1}∗ | w has an odd number of 0s}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars

The rules in a type 3 grammar are of the form

A→ aB or A→ a

where A,B ∈ V and a ∈ Σ ∪ {ε}.

Example

Consider the grammar over Σ = {0, 1} with rules

S → 1S | 0A A→ ε | 1A | 0S

L(G) = {w ∈ {0, 1}∗ | w has an odd number of 0s}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w).

··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w).

··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w).

··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w).

··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w).

··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w).

··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G = (V ,Σ,R,S) be a type 3 grammar. Consider the NFA
M = (Q,Σ, δ, q0,F) where

Q = V ∪ {qF}, where qF 6∈ V

q0 = S

F = {qF}

δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V .
And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff qF ∈ ∆̂(A,w). ··→

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity
NFA to Grammars

Proof (contd).

Let M = (Q,Σ, δ, q0,F) be a NFA recognizing L. Consider
G = (V ,Σ,R,S) where

V = Q

S = q0

q1 → aq2 ∈ R iff q2 ∈ δ(q1, a) and q → ε ∈ R iff q ∈ F .

We can show, for any q, q′ ∈ Q and w ∈ Σ∗, q′ ∈ ∆̂(q,w) iff

q
∗⇒G wq′. Thus, L(M) = L(G).

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity
NFA to Grammars

Proof (contd).

Let M = (Q,Σ, δ, q0,F) be a NFA recognizing L. Consider
G = (V ,Σ,R,S) where

V = Q

S = q0

q1 → aq2 ∈ R iff q2 ∈ δ(q1, a) and q → ε ∈ R iff q ∈ F .

We can show, for any q, q′ ∈ Q and w ∈ Σ∗, q′ ∈ ∆̂(q,w) iff

q
∗⇒G wq′. Thus, L(M) = L(G).

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity
NFA to Grammars

Proof (contd).

Let M = (Q,Σ, δ, q0,F) be a NFA recognizing L. Consider
G = (V ,Σ,R,S) where

V = Q

S = q0

q1 → aq2 ∈ R iff q2 ∈ δ(q1, a) and q → ε ∈ R iff q ∈ F .

We can show, for any q, q′ ∈ Q and w ∈ Σ∗, q′ ∈ ∆̂(q,w) iff

q
∗⇒G wq′. Thus, L(M) = L(G).

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity
NFA to Grammars

Proof (contd).

Let M = (Q,Σ, δ, q0,F) be a NFA recognizing L. Consider
G = (V ,Σ,R,S) where

V = Q

S = q0

q1 → aq2 ∈ R iff q2 ∈ δ(q1, a) and q → ε ∈ R iff q ∈ F .

We can show, for any q, q′ ∈ Q and w ∈ Σ∗, q′ ∈ ∆̂(q,w) iff

q
∗⇒G wq′. Thus, L(M) = L(G).

�

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity
NFA to Grammars

Proof (contd).

Let M = (Q,Σ, δ, q0,F) be a NFA recognizing L. Consider
G = (V ,Σ,R,S) where

V = Q

S = q0

q1 → aq2 ∈ R iff q2 ∈ δ(q1, a) and q → ε ∈ R iff q ∈ F .

We can show, for any q, q′ ∈ Q and w ∈ Σ∗, q′ ∈ ∆̂(q,w) iff

q
∗⇒G wq′. Thus, L(M) = L(G). �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form

A→ β

where A ∈ V and β ∈ (Σ ∪ V)∗.

Type 2 grammars describe context-free languages, which we will
study next in this class.

Example

Consider G over Σ = {0, 1} with rules

S → ε | 0S1

L(G) = {0n1n | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form

A→ β

where A ∈ V and β ∈ (Σ ∪ V)∗.
Type 2 grammars describe context-free languages, which we will
study next in this class.

Example

Consider G over Σ = {0, 1} with rules

S → ε | 0S1

L(G) = {0n1n | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form

A→ β

where A ∈ V and β ∈ (Σ ∪ V)∗.
Type 2 grammars describe context-free languages, which we will
study next in this class.

Example

Consider G over Σ = {0, 1} with rules

S → ε | 0S1

L(G) = {0n1n | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Context Sensitive Grammars
Regular Grammars
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form

A→ β

where A ∈ V and β ∈ (Σ ∪ V)∗.
Type 2 grammars describe context-free languages, which we will
study next in this class.

Example

Consider G over Σ = {0, 1} with rules

S → ε | 0S1

L(G) = {0n1n | n ≥ 0}

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Grammars and their Languages

Grammar Rules Languages

Type 3 A→ aB or A→ a Regular
Type 2 A→ α Context Free
Type 1 α→ β with |α| ≤ |β| Context Sensitive
Type 0 α→ β Recursively Enumerable

In the above table, α, β ∈ (Σ ∪ V)∗, A,B ∈ V and a ∈ Σ ∪ {ε}.

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0n1n | n ≥ 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {anbncn | n ≥ 0}), and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0n1n | n ≥ 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {anbncn | n ≥ 0}), and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar

(L = {0n1n | n ≥ 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {anbncn | n ≥ 0}), and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0n1n | n ≥ 0}),

a language that has a Type
1 grammar but no Type 2 grammar (L = {anbncn | n ≥ 0}), and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0n1n | n ≥ 0}), a language that has a Type
1 grammar but no Type 2 grammar

(L = {anbncn | n ≥ 0}), and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0n1n | n ≥ 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {anbncn | n ≥ 0}),

and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0n1n | n ≥ 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {anbncn | n ≥ 0}), and a
language with a Type 0 grammar but no Type 1 grammar. �

Agha-Viswanathan CS373

Unrestricted Grammars
Restricted Grammars
Chomsky Hierarchy

Overview of Languages

Regular
= Type 3

CFL
= Type 2 L0n1n

CSL
= Type 1 Lanbncn

Decidable
Ld,lba

Recursively Enumerable
= Type 0 Atm

Languages
Ld , Atm

Agha-Viswanathan CS373

	Unrestricted Grammars
	Overview
	Expressive Power

	Restricted Grammars
	Context Sensitive Grammars
	Regular Grammars
	Context Free Grammars

	Chomsky Hierarchy

