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Unrestricted Grammars

Overview
Expressive Power

Grammars

A grammaris G = (V, X, R,S), where
e V is a finite set of variables/non-terminals
@ X is a finite set of terminals
@ S € V is the start symbol
e RC(XUV)* x (XU V)*is a finite set of rules/productions
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Unrestricted Grammars

Overview
Expressive Power

Grammars

A grammaris G = (V, X, R,S), where
e V is a finite set of variables/non-terminals
@ X is a finite set of terminals
@ S € V is the start symbol
e RC(XUV)* x (XU V)*is a finite set of rules/productions

We say y1a72 =6 71872 iff (a = ) € R.
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Unrestricted Grammars

Overview
Expressive Poy

Grammars

Definition
A grammaris G = (V, X, R,S), where

e V is a finite set of variables/non-terminals

@ Y is a finite set of terminals
@ S € V is the start symbol
e RC(XUV)* x (XU V)*is a finite set of rules/productions

We say yiay2 =6 71872 iff (¢ — 8) € R. And
L(G)={weX*|S>Scw}
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Unrestricted Grammars

Overview
Expressive Power

Example

Consider the grammar G with ¥ = {a} with

S—9%Ca# |ale Ca — aaC $D — $C
C#—>D# | E aD — Da aE — Ea
$E — ¢

The following are derivations in this grammar
S = $Cat#t = $aaC# = $aaE = $aEa = $Eaa = aa

S = $Ca# = $aaC# = $aaD# = $aDa# = $Daat# = $Caa#t
= $aaCa#t = $aaaaC# = $aaaakE = $aaaEa = $aaEaa
= $aFaaa = $Faaaa = aaaa
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Unrestricted Grammars

Overview
Expressive Power

Example

Consider the grammar G with ¥ = {a} with

S—9%Ca# |ale Ca — aaC $D — $C
C#—>D# | E aD — Da aE — Ea
$E — ¢

The following are derivations in this grammar
S = $Cat#t = $aaC# = $aaE = $aEa = $Eaa = aa

S = $Ca# = $aaC# = $aaD# = $aDa# = $Daat# = $Caa#t
= $aaCa#t = $aaaaC# = $aaaakE = $aaaEa = $aaEaa
= $aFaaa = $Faaaa = aaaa

L(G) = {a'| i is a power of 2}
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Overview

Expressive Powe

Grammars for each task

@ What is the expressive power of these
grammars?
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Unrestricted Grammars

Overview
Expressiv

Grammars for each task

@ What is the expressive power of these
grammars?

@ Restricting the types of rules, allows one
to describe different aspects of natural
languages

Noam Chomsky
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Unrestricted Grammars

Overview
Expressiv

Grammars for each task

@ What is the expressive power of these
grammars?

@ Restricting the types of rules, allows one
to describe different aspects of natural
languages

@ These grammars form a hierarchy

Noam Chomsky
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Unrestricted Grammars

ive Power

Type 0 Grammars

Type 0 grammars are those where the rules are of the form
a—

where o, 8 € (XU V)*

Consider the grammar G with ¥ = {a} with

S—9%Ca# |ale Ca — aaC $D — $C
C#—>D# | E aD — Da aE — Ea
$E — ¢
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Unrestricted Grammars X
Overview

Expressive Power

Expressive Power of Type 0 Grammars

L is recursively enumerable iff there is a type 0 grammar G such
that L = L(G).
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Unrestricted Grammars
Overview

Expressive Power

Expressive Power of Type 0 Grammars

Theorem

L is recursively enumerable iff there is a type 0 grammar G such
that L = L(G).

Thus, type 0 grammars are as powerful as Turing machines.
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Unrestricted Grammars

Overview
Expressive Power

Recognizing Type 0 languages

IfG=(V,X,R,S) is a type 0 grammar then L(G) is recursively
enumerable.
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Unrestricted Grammars _
Overview

Expressive Power

Recognizing Type 0 languages

IfG=(V,X,R,S) is a type 0 grammar then L(G) is recursively
enumerable.

Proof.

We will show that L(G) is recognized by a 2-tape
non-deterministic Turing machine M, with tape 1 storing the input
w, and tape 2 used to construct a derivation of w from S. —
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Unrestricted Grammars .
Overview

Expressive Power

Recognizing Type 0 Grammars

Proof (contd).
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Unrestricted Grammars .
Overview

Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

@ At any given time tape 2, stores the current string of the
derivation; initial tape contains S.
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Unrestricted Grammars
Overview

Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

@ At any given time tape 2, stores the current string of the
derivation; initial tape contains S.

@ To simulate the next derivation step, M will
(nondeterministically) choose a rule to apply, scan from left to
right and choose (nondeterministically) a position to apply the
rule, replace the substring matching the LHS of the rule with
the RHS to get the string at the next step of derivation.
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Unrestricted Grammars

Overview
Expressive Power

Recognizing Type 0 Grammars

Proof (contd).

@ At any given time tape 2, stores the current string of the
derivation; initial tape contains S.

@ To simulate the next derivation step, M will
(nondeterministically) choose a rule to apply, scan from left to
right and choose (nondeterministically) a position to apply the
rule, replace the substring matching the LHS of the rule with
the RHS to get the string at the next step of derivation.

o If tape 2 contains only terminal symbols, then M will check to
see if it matches tape 1. If so, the input is accepted, else it is
rejected. O
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

@ A string v in the derivation will encode a configuration of M
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

@ A string v in the derivation will encode a configuration of M

@ G has rules such that v3 = 72 iff v2 Fpp 11
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

@ A string v in the derivation will encode a configuration of M
@ G has rules such that y3 = v iff 2 Fyy 11
@ The rules of S will generate an accepting configuration of M
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

@ A string v in the derivation will encode a configuration of M
@ G has rules such that y3 = v iff 2 Fyy 11
@ The rules of S will generate an accepting configuration of M

@ Once (some) initial configuration gow is generated, rules in G
will erase symbols to produce the terminal w.
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Unrestricted Grammars

Overview
Expressive Power

Describing R.E. Languages

If L is recursively enumerable, then there is a type 0 grammar G
such that L = L(G).

Proof.

Let M be a Turing machine recognizing L. The grammar G will
simulate M “backwards” starting from an accepting configuration.

@ A string v in the derivation will encode a configuration of M
@ G has rules such that y3 = v iff 2 Fyy 11
@ The rules of S will generate an accepting configuration of M

@ Once (some) initial configuration gow is generated, rules in G
will erase symbols to produce the terminal w.

Details in the notes. O
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Context Sensitive Grammars
Restricted Grammars R G

Type 1 Grammars

The rules in a type 1 grammar are of the form
a—f

where a, 8 € (X U V)* and |a| < |B].
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Context Sensitive Grammars
Restricted Grammars R G

Type 1 Grammars

The rules in a type 1 grammar are of the form
a—f

where a, 8 € (X U V)* and |a| < |B].
In every derivation, the length of the string never decreases.

Agha-Viswanathan CS373



Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form
a—f

where a, 8 € (X U V)* and |a| < |B].
In every derivation, the length of the string never decreases.

Example

Consider the grammar G with ¥ = {a, b,c}, V ={S,B, C,H} and

S — aSBC | aBC CB — HB HB — HC
HC — BC aB — ab bB — bb
bC — bc cC — cc
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form
a—f

where a, 8 € (X U V)* and |a| < |B].
In every derivation, the length of the string never decreases.

Example

Consider the grammar G with ¥ = {a, b,c}, V ={S,B, C,H} and

S — aSBC | aBC CB — HB HB — HC
HC — BC aB — ab bB — bb
bC — bc cC — cc

L(G) ={a"b"c" | n> 0}
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Context Sensitive Grammars
Restricted Grammars eg Grammars

Free Grammars

Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form)
G’ such that L(G) = L(G’) and all the rules of G’ are of the form

alAa2 = OzlﬂOQ

where A€ V and g € (XU V)*
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Context Sensitive Grammars
Restricted Grammars eg Grammars

Free Grammars

Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form)
G’ such that L(G) = L(G’) and all the rules of G’ are of the form

alAa2 = OzlﬂOQ

where A€ V and g € (XU V)*
So, rules of G’ replace a variable A by /3 in the context a;as.
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Context Sensitive Grammars
Restricted Grammars eg Grammars

Free Grammars

Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form)
G’ such that L(G) = L(G’) and all the rules of G’ are of the form

alAa2 = OzlﬂOQ

where A€ V and g € (XU V)*

So, rules of G’ replace a variable A by /3 in the context a;as.
Thus, the class of language described by Type 1 grammars are
called context-sensitive languages.
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Restricted Grammars

Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?
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Restricted Grammars

Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?

@ It turns out to be quite a lot!
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Restricted Grammars

Expressive Power of Context Sensitive Languages

What languages can be described by Type 1 grammars?
@ It turns out to be quite a lot!

@ To say exactly, we need to define a new class of machines . ..
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Context Sensitive Grammars

Restricted Grammars eg Grammars
Free Grammars

Linear Bounded Automata

finite-state
control

’X1|X2| e |X,,‘ tape

head

Definition
A linear bounded automaton is a restricted Turing machine where
the tape head is not permitted to move beyond the portion of the
tape containing the input.
@ If the machine tries to move the head off either end of the
input, the head stays where it is.
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Context Sensitive Grammars
Restricted Grammars R G

LBA and Type 1 Grammars

If G is a Type 1 grammar then there is a linear bounded
automaton M such that L(G) = L(M).
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Restricted Grammars

LBA and Type 1 Grammars

Theorem
If G is a Type 1 grammar then there is a linear bounded
automaton M such that L(G) = L(M).

If M is a linear bounded automaton then there is a Type 1
grammar G such that L(M) = L(G).
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Context Free Grammars

LBA and Type 1 Grammars

Theorem
If G is a Type 1 grammar then there is a linear bounded
automaton M such that L(G) = L(M).

If M is a linear bounded automaton then there is a Type 1
grammar G such that L(M) = L(G).

Proof.
Translations between TMs and Type 0 grammars, when carried out
on Type 1 grammars and LBAs, prove this theorem. O
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Decidability of LBAs

If M is a linear bounded automaton, then L(M) is decidable.

@ The number of configurations of M on an input of length n is
at most snt”, where s is the number of states of M and t is
the size of the tape alphabet
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Decidability of LBAs

If M is a linear bounded automaton, then L(M) is decidable.

@ The number of configurations of M on an input of length n is
at most snt”, where s is the number of states of M and t is
the size of the tape alphabet

@ If M accepts w of length n then M does so within snt” steps.
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Decidability of LBAs

If M is a linear bounded automaton, then L(M) is decidable.

@ The number of configurations of M on an input of length n is
at most snt”, where s is the number of states of M and t is
the size of the tape alphabet

@ If M accepts w of length n then M does so within snt” steps.

e Any computation of length more than snt” is “cycling” and so
cannot accept w o

Agha-Viswanathan CS373



Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Decidability of LBAs

If M is a linear bounded automaton, then L(M) is decidable.

@ The number of configurations of M on an input of length n is
at most snt”, where s is the number of states of M and t is
the size of the tape alphabet

e Any configuration is state + head position + contents of the
tape. The observation follows since the tape has at most n
symbols.

@ If M accepts w of length n then M does so within snt” steps.

e Any computation of length more than snt” is “cycling” and so
cannot accept w =
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Context Sensitive Grammars
Restricted Grammars R G

Decidability of LBAs

Proof (contd).
Consider the following TM D that always halts and decides L(M)

On input w
Run M on w for s|w|t!"l steps
If M accepts w then accept else reject
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Context Sensitive Grammars
Restricted Grammars Regular Gram

Model for Decidability?

Do LBAs recognize all decidable languages?
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Context Sensitive Grammars
Restricted Grammars R
C

Model for Decidability?

Do LBAs recognize all decidable languages?

@ LBAs recognize many but not all decidable languages.
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Context Sensitive Grammars
Restricted Grammars R G

Model for Decidability?

Do LBAs recognize all decidable languages?
@ LBAs recognize many but not all decidable languages.

@ Decidable languages not recognized by LBAs can be found by
diagonalization.
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Diagonal LBA Language

Recall that every LBA can be coded as a binary string, and every
binary string can be thought of as an LBA. We now consider only
LBAs whose input alphabet is {0,1}.

Theorem

Loiga ={M|M isa LBA and M & L(M)} is decidable but not
context sensitive, i.e., recognized by an LBA.
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

La 1z is decidable
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
t Free Grammars

La 1z is decidable

The following program M decides Lq 154

On input Xx
Check if x accepts x
If x accepts x then reject else accept
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

La 1z is decidable

The following program M decides Lq 154

On input Xx
Check if x accepts x
If x accepts x then reject else accept

Since languages recognized by LBAs are decidable, the step to
check if x accepts x will halt.
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Context Sensitive Grammars
Restricted Grammars R G

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.
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Context Sensitive Grammars
Restricted Grammars R G

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.
] NOW, |f M € Ld,LBA = L(M)
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Restricted Grammars

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.
e Now, if M € Lgps = L(M) then M is accepted by M,
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Restricted Grammars

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.

@ Now, if M € Ly s = L(M) then M is accepted by M, which
means M & Lq;pa!
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Restricted Grammars

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.

@ Now, if M € Ly s = L(M) then M is accepted by M, which
means M & Lq;pa!

o Conversely, if M & Ly 55 = L(M)
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Free Grammars

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.

@ Now, if M € Ly s = L(M) then M is accepted by M, which
means M & Lq;pa!

o Conversely, if M & Ly 51 = L(M) then M is not accepted by
M
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Context Free Grammars

La1ga 1S NOt context sensitive

@ Suppose Ly, wWere recognized by a LBA, say M.

@ Now, if M € Ly s = L(M) then M is accepted by M, which
means M & Lq;pa!

o Conversely, if M & Ly 51 = L(M) then M is not accepted by
M which means M € Lg1p,!
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© ammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars

The rules in a type 3 grammar are of the form
A— aB or A—a

where A,;B € V and a € X U {¢}.
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars

The rules in a type 3 grammar are of the form
A— aB or A—a

where A,;B € V and a € X U {¢}.

Consider the grammar over ¥ = {0, 1} with rules

S—15|0A A—e|1A]0S
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars

The rules in a type 3 grammar are of the form
A— aB or A—a

where A,;B € V and a € X U {¢}.

Example

Consider the grammar over ¥ = {0, 1} with rules
S— 1S | 0A A—e|1A|0S

L(G) = {w € {0,1}* | w has an odd number of Os}
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Restricted Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Context Free Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).

Let G =(V,X,R,S) be a type 3 grammar. Consider the NFA
M= (Q,%,, qo, F) where
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Context Free Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).

Let G =(V,X,R,S) be a type 3 grammar. Consider the NFA
M= (Q,%,, qo, F) where

© Q=VU{qr} where gr ¢ V
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Context Free Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).

Let G =(V,X,R,S) be a type 3 grammar. Consider the NFA
M= (Q,%,, qo, F) where

© Q=VU{qr} where gr ¢ V
® =35
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Context Sensitive Grammars
Restricted Grammars Regular Grammars

Context Free Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).

Let G =(V,X,R,S) be a type 3 grammar. Consider the NFA
M= (Q,%,, qo, F) where

© Q=VU{qr} where gr ¢ V
@ =35
o F={qr}
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).

Let G =(V,X,R,S) be a type 3 grammar. Consider the NFA
M= (Q,%,, qo, F) where

© Q=VU{qr} where gr ¢ V
@ =35
o F={qr}

@ J(A,a)={B|if A»aBec R}U{gr|ifA—ac R} forAc V.
And 6(qr, a) = 0 for all a.
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

L is regular iff there is a Type 3 grammar G such that L = L(G).

Proof.

Let G =(V,X,R,S) be a type 3 grammar. Consider the NFA
M= (Q,%,, qo, F) where

© Q=VU{qr} where gr ¢ V
@ =35
o F={qr}

d(A,a)={B|if A>aBe R}U{qgr|ifA—ac R} for Ac V.
And 6(qr, a) = 0 for all a.

L(M)=L(G)asVA € V,Yw € X*, A ¢ wiff gr € A(A, w). b
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

NFA to Grammars

Proof (contd).

Let M = (Q, X, 0, qo, F) be a NFA recognizing L. Consider
G=(V,%,R,S) where
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

NFA to Grammars

Proof (contd).

Let M = (Q, X, 0, qo, F) be a NFA recognizing L. Consider
G=(V,%,R,S) where
o V=Q
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Context Sensiti rammars
Restricted Grammars Regular Gram
Context Free mmars

Type 3 Grammars and Regularity

NFA to Grammars

Proof (contd).

Let M = (Q, X, 0, qo, F) be a NFA recognizing L. Consider
G=(V,%,R,S) where

o V=Q

° 5=qo
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Context Sens
Restricted Grammars Regular Gramm
Context Free Grammars

Type 3 Grammars and Regularity

NFA to Grammars

Proof (contd).

Let M = (Q, X, 0, qo, F) be a NFA recognizing L. Consider
G=(V,%,R,S) where

o V=0

° 5=qo

®© g1 —+aq € Riff g2 € (q1,a) and g > e € Riff g € F.
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Context
Restricted Grammars Regular Grammars
Context Free Grammars

Type 3 Grammars and Regularity

NFA to Grammars

Proof (contd).

Let M = (Q, X, 0, qo, F) be a NFA recognizing L. Consider
G=(V,%,R,S) where
o V=0
° 5=qo
®© g1 —+aq € Riff g2 € (q1,a) and g > e € Riff g € F.
We can show, for any ¢,¢' € Q and w € ¥*, ¢’ € A(q, w) iff
q = wq'. Thus, L(M) = L(G). O
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rammars
Restricted Grammars E
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form
A—=p

where A€ V and 5 € (XU V)*.
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rammars
Restricted Grammars E
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form
A—=p

where A€ V and 5 € (XU V)*.
Type 2 grammars describe context-free languages, which we will
study next in this class.
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
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Type 2 Grammars

The rules in a type 2 grammar are of the form
A—=p

where A€ V and g € (XU V)*.
Type 2 grammars describe context-free languages, which we will
study next in this class.

Example
Consider G over X = {0, 1} with rules

S —e]0S1
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Context Sensitive Grammars
Restricted Grammars Regular Grammars
Context Free Grammars

Type 2 Grammars

The rules in a type 2 grammar are of the form
A—=p

where A€ V and g € (XU V)*.
Type 2 grammars describe context-free languages, which we will
study next in this class.

Example
Consider G over X = {0, 1} with rules

S —e]0S1
L(G)={0"1"|n> 0}
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Chomsky Hierarchy

Grammars and their Languages

Grammar Rules Languages
Type 3 A—aBorA—a Regular
Type 2 A—« Context Free
Typel | o — S with o] < |f] Context Sensitive
Type O a— Recursively Enumerable

In the above table, o, 8 € (XU V)*, A,B€ V and a € ¥ U {¢}.
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0"1" | n > 0}),
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0"1" | n > 0}), a language that has a Type
1 grammar but no Type 2 grammar
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0"1" | n > 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {a"b"c" | n > 0}),
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Chomsky Hierarchy

Chomsky Hierarchy

Type 0, Type 1, Type 2, and Type 3 grammars define a strict
hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2
grammar is a special Type 1 grammar, and a Type 1 grammar is
special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no
Type 3 grammar (L = {0"1" | n > 0}), a language that has a Type
1 grammar but no Type 2 grammar (L = {a"b"c" | n > 0}), and a
language with a Type 0 grammar but no Type 1 grammar. 0
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Chomsky Hierarchy

Overview of Languages

-
Languages N
Ldy ATM

( Recursively Enumerable
= Type 0 A'I'\I

(" Decidable
Ld,LLz,\

[ csL
= Type 1 Lanbnen

CFL
= Type 2 LOnln

Regular
= Type 3
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