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Converting a DFA to an Equivalent Regular Expression

Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

Given regular expression R, can construct NFA N such that
L(N) = L(R)

Given DFA M, will construct regular expression R such that
L(M) = L(R) �
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Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regular Expression

Given DFA M, will construct regular expression R such that
L(M) = L(R).

In two steps:

Construct a “Generalized NFA” (GNFA) G from the DFA M
And then convert G to a regex R
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Generalized NFA

A GNFA is similar to an NFA, but:

There is a single accept state.
The start state has no incoming transitions, and the accept
state has no outgoing transitions.

These are “cosmetic changes”: Any NFA can be converted to
an equivalent NFA of this kind.

The transitions are labeled not by characters in the alphabet,
but by regular expressions.

For every pair of states (q1, q2), the transition from q1 to q2 is
labeled by a regular expression ρ(q1, q2).

“Generalized NFA” because a normal NFA has transitions
labeled by ε, elements in Σ (a union of elements, if multiple
edges between a pair of states) and ∅ (missing edges).
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Generalized NFA

Transition: GNFA non-deterministically reads a block of
characters from the input, chooses an edge from the current
state q1 to another state q2, and if the block of symbols
matches the regex ρ(q1, q2), then moves to q2.

Acceptance: G accepts w if there exists some sequence of
valid transitions such that on starting from the start state,
and after finishing the entire input, G is in the accept state.
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Generalized NFA: Example

q0

q1

q2

0∗10∗ 0∗

0∗

10∗10∗

Example GNFA G

Accepting run of G on 11110100 is

q0
1−→G q1

11−→G q1
101−→G q1

00−→G q2
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Generalized NFA: Definition

Definition

A generalized nondeterministic finite automaton (GNFA) is
G = (Q,Σ, q0, qF , ρ), where

Q is the finite set of states

Σ is the finite alphabet

q0 ∈ Q initial state

qF ∈ Q, a single accepting state

ρ : (Q \ {qF})× (Q \ {q0})→ RΣ, where RΣ is the set of all
regular expressions over the alphabet Σ
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Generalized NFA: Definition

Definition

For a GNFA M = (Q,Σ, q0, qF , ρ) and string w ∈ Σ∗, we say M
accepts w iff there exist x1, . . . , xt ∈ Σ∗ and states r0, . . . , rt such
that

w = x1x2x3 · · · xt
r0 = q0 and rt = qF

for each i ∈ [1, t], xi ∈ L(ρ(ri−1, ri )),
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Converting DFA to GNFA

A DFA M = (Q,Σ, δ, q0,F ) can be easily converted to an
equivalent GNFA G = (Q ′,Σ, q′0, q

′
F , ρ):

Q ′ = Q ∪ {q′0, q′F} where Q ∩ {q′0, q′F} = ∅

ρ(q1, q2) =


ε, if q1 = q′0 and q2 = q0

ε, if q1 ∈ F and q2 = q′F⋃
{a|δ(q1,a)=q2} a otherwise

q′0 q′Fq0

q1

q2

ε
ε

ε

Prove: L(G ) = L(M).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

Converting DFA to GNFA

A DFA M = (Q,Σ, δ, q0,F ) can be easily converted to an
equivalent GNFA G = (Q ′,Σ, q′0, q

′
F , ρ):

Q ′ = Q ∪ {q′0, q′F} where Q ∩ {q′0, q′F} = ∅

ρ(q1, q2) =


ε, if q1 = q′0 and q2 = q0

ε, if q1 ∈ F and q2 = q′F⋃
{a|δ(q1,a)=q2} a otherwise

q′0 q′Fq0

q1

q2

ε
ε

ε

Prove: L(G ) = L(M).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

Converting DFA to GNFA

A DFA M = (Q,Σ, δ, q0,F ) can be easily converted to an
equivalent GNFA G = (Q ′,Σ, q′0, q

′
F , ρ):

Q ′ = Q ∪ {q′0, q′F} where Q ∩ {q′0, q′F} = ∅

ρ(q1, q2) =


ε, if q1 = q′0 and q2 = q0

ε, if q1 ∈ F and q2 = q′F⋃
{a|δ(q1,a)=q2} a otherwise

q′0 q′Fq0

q1

q2

ε
ε

ε

Prove: L(G ) = L(M).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

Converting DFA to GNFA

A DFA M = (Q,Σ, δ, q0,F ) can be easily converted to an
equivalent GNFA G = (Q ′,Σ, q′0, q

′
F , ρ):

Q ′ = Q ∪ {q′0, q′F} where Q ∩ {q′0, q′F} = ∅

ρ(q1, q2) =


ε, if q1 = q′0 and q2 = q0

ε, if q1 ∈ F and q2 = q′F⋃
{a|δ(q1,a)=q2} a otherwise

q′0 q′Fq0

q1

q2

ε
ε

ε

Prove: L(G ) = L(M).
Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

GNFA to Regex

Suppose G is a GNFA with only two states, q0 and qF .
Then L(R) = L(G ) where R = ρ(q0, qF ).
How about G with three states?

q0

q1

qF

R4

R1 R3

R2

q0 qF

(R4) ∪ (R1R
∗
2R3)

Plan: Reduce any GNFA G with k > 2 states to an equivalent
GFA with k − 1 states.
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GNFA to Regex: From k states to k − 1 states

Definition (Deleting a GNFA State)

Given GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, and any state
q∗ ∈ Q \ {q0, qF}, define GNFA rip(G , q∗) = (Q ′,Σ, q0, qF , ρ

′) as
follows:

Q ′ = Q \ {q∗}.
For any (q1, q2) ∈ Q ′ \{qF}×Q ′ \{q0} (possibly q1 = q2), let

ρ′(q1, q2) = (R1R
∗
2R3) ∪ R4,

where R1 = ρ(q1, q
∗), R2 = ρ(q∗, q∗), R3 = ρ(q∗, q2) and

R4 = ρ(q1, q2).

Claim. For any q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent.
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GNFA to Regex: From k states to k − 1 states
w ∈ L(G) =⇒ w ∈ L(G ′)

Proof.
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GNFA to Regex: From k states to k − 1 states
w ∈ L(G ′) =⇒ w ∈ L(G)

Proof (contd).

w ∈ L(G ′) =⇒ w = y1 · · · yd and a sequence of states
q0 = s0, . . . , sd = qF s.t. yj ∈ L(ρ′(sj−1, sj)) =
L ((ρ(sj−1, q

∗)ρ(q∗, q∗)∗ρ(q∗, ri )) ∪ ρ(sj−1, sj)) =
L(R1R

∗
2R3) ∪ L(R4).

To build a sequence of blocks x1, . . . , xt and a sequence of
states q0 = r0, . . . , rt = qF to show w ∈ L(G ):

Case yj ∈ L(R4). Retain the block yj and retain sj−1 and sj as
adjacent states.
Case yj ∈ L(R1R

∗
2 R3). yj = z0 · · · zu+1 where z0 ∈ L(R1),

z1, . . . , zu ∈ L(R2) and zu+1 = L(R3) (for some finite u). Insert
u + 1 copies of q∗ between sj−1 and sj . Divide yj into u + 2
blocks (z0, . . . , zu+1). �

(See notes for a formal argument.)
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DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent. rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′). Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent. rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′). Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent.

rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′). Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent. rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′). Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent. rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′).

Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent. rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′). Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G ).

For any GNFA G = (Q,Σ, q0, qF , ρ) with |Q| > 2, for any
q∗ ∈ Q \ {q0, qF}, G and rip(G , q∗) are equivalent. rip(G , q∗)
has one fewer state than G .

So given G , by applying rip repeatedly (choosing q∗ arbitrarily
each time), we can get a GNFA G ′ with two states s.t.
L(G ) = L(G ′). Formally, by induction on the number of states
in G .

For a 2-state GNFA G ′, L(G ′) = L(R), where R = ρ(q0, qF ).

Agha-Viswanathan CS373



Converting a DFA to an Equivalent Regular Expression
Generalized NFA
Converting DFA to GNFA
Converting GNFA to Regular Expression

DFA to Regex: Example

q1 q2

0 0
1

1
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q1 q2

q0 qF

0 0
1

1
ε ε∅

∅
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q2

q0 qF

0 ∪ (10∗1)

ε0∗1 ε
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q0 qF
0∗1(0 ∪ (10∗1))∗
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