CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

University of Illinois, Urbana-Champaign

Fall 2010

Regular Expressions and Regular Languages

Why do they have such similar names?

Regular Expressions and Regular Languages

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R) = L

i.e., Regular expressions have the same "expressive power" as finite automata.

Proof.

- Given regular expression R, can construct NFA N such that L(N) = L(R)
- Given DFA M, will construct regular expression R such that L(M) = L(R)

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

DFA to Regular Expression

• Given DFA M, will construct regular expression R such that L(M) = L(R).

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

DFA to Regular Expression

• Given DFA M, will construct regular expression R such that L(M) = L(R). In two steps:

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

DFA to Regular Expression

- Given DFA *M*, will construct regular expression *R* such that L(M) = L(R). In two steps:
 - Construct a "Generalized NFA" (GNFA) G from the DFA M
 - And then convert G to a regex R

- 4 聞 と 4 臣 と 4 臣 と

æ

Generalized NFA

• A GNFA is similar to an NFA, but:

- ∢ ⊒ →

э

- A GNFA is similar to an NFA, but:
 - There is a single accept state.

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states (q_1, q_2) , the transition from q_1 to q_2 is labeled by a regular expression $\rho(q_1, q_2)$.

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states (q₁, q₂), the transition from q₁ to q₂ is labeled by a regular expression ρ(q₁, q₂).
 - "Generalized NFA" because a normal NFA has transitions labeled by *ε*, elements in Σ (a union of elements, if multiple edges between a pair of states) and Ø (missing edges).

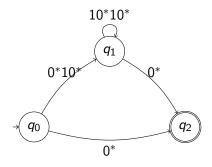
Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

 Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q₁ to another state q₂, and if the block of symbols matches the regex ρ(q₁, q₂), then moves to q₂.

- Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q₁ to another state q₂, and if the block of symbols matches the regex ρ(q₁, q₂), then moves to q₂.
- Acceptance: G accepts w if there exists some sequence of valid transitions such that on starting from the start state, and after finishing the entire input, G is in the accept state.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Example

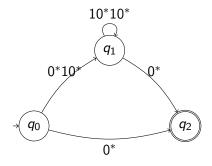


Example GNFA G

Accepting run of G on 11110100 is

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Example

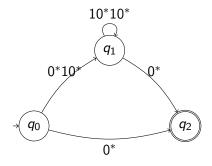


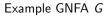
Example GNFA G

Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_{G} q_1$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Example

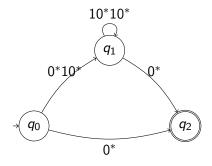


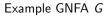


Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_G q_1 \xrightarrow{11}_G q_1$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Example

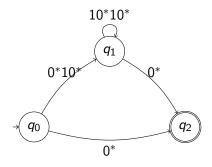


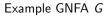


Accepting run of *G* on 11110100 is $q_0 \xrightarrow{1}_G q_1 \xrightarrow{11}_G q_1 \xrightarrow{101}_G q_1$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Example





Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_G q_1 \xrightarrow{11}_G q_1 \xrightarrow{101}_G q_1 \xrightarrow{00}_G q_2$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

A generalized nondeterministic finite automaton (GNFA) is $G = (Q, \Sigma, q_0, q_F, \rho)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $q_0 \in Q$ initial state

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

A generalized nondeterministic finite automaton (GNFA) is $G = (Q, \Sigma, q_0, q_F, \rho)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $q_0 \in Q$ initial state
- $q_F \in Q$, a single accepting state

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

A generalized nondeterministic finite automaton (GNFA) is $G = (Q, \Sigma, q_0, q_F, \rho)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $q_0 \in Q$ initial state
- $q_F \in Q$, a single accepting state
- $\rho: (Q \setminus \{q_F\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}_{\Sigma}$, where \mathcal{R}_{Σ} is the set of all regular expressions over the alphabet Σ

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

•
$$w = x_1 x_2 x_3 \cdots x_t$$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

- $w = x_1 x_2 x_3 \cdots x_t$
- $r_0 = q_0$ and $r_t = q_F$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

Generalized NFA: Definition

Definition

- $w = x_1 x_2 x_3 \cdots x_t$
- $r_0 = q_0$ and $r_t = q_F$
- for each $i \in [1, t]$, $x_i \in L(\rho(r_{i-1}, r_i))$,

A B + A B +

< 67 ▶

э

Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$:

A B + A B +

< 67 ▶

э

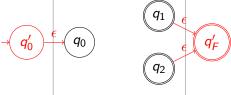
Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$:

•
$$Q' = Q \cup \{q'_0, q'_F\}$$
 where $Q \cap \{q'_0, q'_F\} = \emptyset$

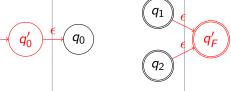
Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$: • $Q' = Q \cup \{q'_0, q'_F\}$ where $Q \cap \{q'_0, q'_F\} = \emptyset$ • $\rho(q_1, q_2) = \begin{cases} \epsilon, & \text{if } q_1 = q'_0 \text{ and } q_2 = q_0 \\ \epsilon, & \text{if } q_1 \in F \text{ and } q_2 = q'_F \\ \bigcup_{\{a \mid \delta(q_1, a) = q_2\}} a & \text{otherwise} \end{cases}$



Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$: • $Q' = Q \cup \{q'_0, q'_F\}$ where $Q \cap \{q'_0, q'_F\} = \emptyset$ • $\rho(q_1, q_2) = \begin{cases} \epsilon, & \text{if } q_1 = q'_0 \text{ and } q_2 = q_0 \\ \epsilon, & \text{if } q_1 \in F \text{ and } q_2 = q'_F \\ \bigcup_{\{a \mid \delta(q_1, a) = q_2\}} a & \text{otherwise} \end{cases}$



Prove:
$$L(G) = L(M)$$
.

æ

<ロト <部ト < 注ト < 注ト

·≣ ► < ≣ ►

< 17 ▶

æ

GNFA to Regex

• Suppose G is a GNFA with only two states, q_0 and q_F .

(人間) ト く ヨ ト く ヨ ト

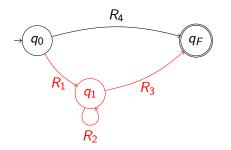
э

- Suppose G is a GNFA with only two states, q_0 and q_F .
- Then L(R) = L(G) where $R = \rho(q_0, q_F)$.

- ∢ ≣ ▶

- Suppose G is a GNFA with only two states, q_0 and q_F .
- Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- How about G with three states?

- Suppose G is a GNFA with only two states, q_0 and q_F .
- Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- How about G with three states?

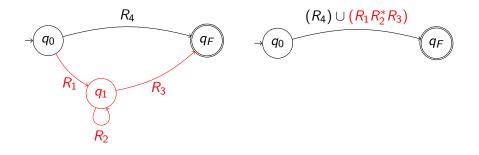


GNFA to Regex

• Suppose G is a GNFA with only two states, q_0 and q_F .

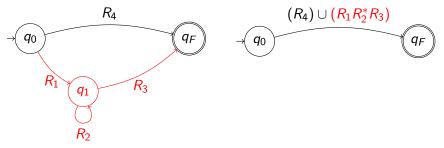
• Then
$$L(R) = L(G)$$
 where $R = \rho(q_0, q_F)$.

• How about G with three states?



GNFA to Regex

- Suppose G is a GNFA with only two states, q_0 and q_F .
- Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- How about G with three states?



• Plan: Reduce any GNFA G with k > 2 states to an equivalent GFA with k - 1 states.

GNFA to Regex: From k states to k - 1 states

Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\operatorname{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

GNFA to Regex: From k states to k - 1 states

Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\operatorname{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

•
$$Q' = Q \setminus \{q^*\}.$$

(日)

GNFA to Regex: From k states to k - 1 states

Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\operatorname{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

- $Q' = Q \setminus \{q^*\}.$
- For any $(q_1,q_2)\in Q'\setminus\{q_F\} imes Q'\setminus\{q_0\}$ (possibly $q_1=q_2$), let

$$\rho'(q_1, q_2) = (R_1 R_2^* R_3) \cup R_4,$$

where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.

GNFA to Regex: From k states to k - 1 states

Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\operatorname{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

- $Q' = Q \setminus \{q^*\}.$
- For any $(q_1,q_2)\in Q'\setminus\{q_F\} imes Q'\setminus\{q_0\}$ (possibly $q_1=q_2$), let

$$\rho'(q_1, q_2) = (R_1 R_2^* R_3) \cup R_4,$$

where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.

Claim. For any $q^* \in Q \setminus \{q_0, q_F\}$, G and $rip(G, q^*)$ are equivalent.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

GNFA to Regex: From k states to k - 1 states $w \in L(G) \implies w \in L(G')$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

GNFA to Regex: From k states to k - 1 states $w \in L(G) \implies w \in L(G')$

Proof.

• $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

GNFA to Regex: From k states to k - 1 states $w \in L(G) \implies w \in L(G')$

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

GNFA to Regex: From k states to k - 1 states $w \in L(G) \implies w \in L(G')$

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any *run* of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(
 ho'(s_{j-1},s_j))$

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$
 - Let $R_1 = \rho(s_{j-1}, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1R_2^*R_3)$.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$
 - Let $R_1 = \rho(s_{j-1}, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3)$.
 - Case a = b. $(s_{j-1}, s_j) = (r_{b-1}, r_b)$ and $x_{[a,b]} = x_b \in L(R_4)$.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

GNFA to Regex: From k states to k - 1 states $w \in L(G) \implies w \in L(G')$

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any *run* of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1}=r_{a-1}$ and $s_j=r_b$, then $x_{[a,b]}\in L(
 ho'(s_{j-1},s_j))$
 - Let $R_1 = \rho(s_{j-1}, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3)$.
 - Case a = b. $(s_{j-1}, s_j) = (r_{b-1}, r_b)$ and $x_{[a,b]} = x_b \in L(R_4)$.
 - Case a = b + 1 + u. $x_a \in L(R_1)$, $x_{a+1}, \dots, x_{b-1} \in L(R_2)$ and $x_b \in L(R_3)$. So $x_{[a,b]} \in L(R_1R_2^uR_3)$.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$
- Let y_1, \ldots, y_d be the sequence of blocks of the form $x_{[a,b]}$.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1}=r_{a-1}$ and $s_j=r_b$, then $x_{[a,b]}\in L(
 ho'(s_{j-1},s_j))$
- Let y_1, \ldots, y_d be the sequence of blocks of the form $x_{[a,b]}$.
- Then $w = y_1 \cdots y_d$ and $y_j \in L(\rho'(s_{j-1}, s_j))$.

Proof.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let (q₀ = s₀,..., s_d = q_F) be the subsequence of states obtained by deleting all occurrences of q^{*}.
- For any *run* of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1}=r_{a-1}$ and $s_j=r_b$, then $x_{[a,b]}\in L(
 ho'(s_{j-1},s_j))$
- Let y_1, \ldots, y_d be the sequence of blocks of the form $x_{[a,b]}$.
- Then $w = y_1 \cdots y_d$ and $y_j \in L(\rho'(s_{j-1}, s_j))$.

i.e., $w \in L(G) \implies w \in L(G')$.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

Proof (contd).

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

・ロト ・同ト ・ヨト ・ヨト

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

Proof (contd).

• $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j))$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

3

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

•
$$w \in L(G') \implies w = y_1 \cdots y_d$$
 and a sequence of states
 $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =$
 $L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j))$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

(日) (同) (日) (日) (日)

э

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

•
$$w \in L(G') \implies w = y_1 \cdots y_d$$
 and a sequence of states
 $q_0 = s_0, \dots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =$
 $L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) =$
 $L(R_1R_2^*R_3) \cup L(R_4).$

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

- $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =$ $L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) =$ $L(R_1R_2^*R_3) \cup L(R_4).$
- To build a sequence of blocks x₁,..., x_t and a sequence of states q₀ = r₀,..., r_t = q_F to show w ∈ L(G):

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

- $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =$ $L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) =$ $L(R_1R_2^*R_3) \cup L(R_4).$
- To build a sequence of blocks x₁,..., x_t and a sequence of states q₀ = r₀,..., r_t = q_F to show w ∈ L(G):
 - Case y_j ∈ L(R₄). Retain the block y_j and retain s_{j-1} and s_j as adjacent states.

(日)

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

- $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =$ $L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) =$ $L(R_1R_2^*R_3) \cup L(R_4).$
- To build a sequence of blocks x₁,..., x_t and a sequence of states q₀ = r₀,..., r_t = q_F to show w ∈ L(G):
 - Case y_j ∈ L(R₄). Retain the block y_j and retain s_{j-1} and s_j as adjacent states.
 - Case $y_j \in L(R_1R_2^*R_3)$. $y_j = z_0 \cdots z_{u+1}$ where $z_0 \in L(R_1)$, $z_1, \ldots, z_u \in L(R_2)$ and $z_{u+1} = L(R_3)$ (for some finite *u*). Insert u+1 copies of q^* between s_{j-1} and s_j . Divide y_j into u+2blocks (z_0, \ldots, z_{u+1}) .

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

(日)

GNFA to Regex: From k states to k - 1 states $w \in L(G') \implies w \in L(G)$

Proof (contd).

- $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =$ $L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) =$ $L(R_1R_2^*R_3) \cup L(R_4).$
- To build a sequence of blocks x₁,..., x_t and a sequence of states q₀ = r₀,..., r_t = q_F to show w ∈ L(G):
 - Case y_j ∈ L(R₄). Retain the block y_j and retain s_{j-1} and s_j as adjacent states.
 - Case $y_j \in L(R_1R_2^*R_3)$. $y_j = z_0 \cdots z_{u+1}$ where $z_0 \in L(R_1)$, $z_1, \ldots, z_u \in L(R_2)$ and $z_{u+1} = L(R_3)$ (for some finite *u*). Insert u + 1 copies of q^* between s_{j-1} and s_j . Divide y_j into u + 2blocks (z_0, \ldots, z_{u+1}) .

CS373

(See notes for a formal argument.)

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

글 > - < 글 >

< 67 ▶

э

DFA to Regex: Summary

Lemma

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that L(M) = L(R).

Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip (G, q^*) are equivalent.

Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

DFA to Regex: Summary

Lemma

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip (G, q^*) are equivalent. rip (G, q^*) has one fewer state than G.

DFA to Regex: Summary

Lemma

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip (G, q^*) are equivalent. rip (G, q^*) has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q* arbitrarily each time), we can get a GNFA G' with two states s.t.
 L(G) = L(G').

DFA to Regex: Summary

Lemma

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip (G, q^*) are equivalent. rip (G, q^*) has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q* arbitrarily each time), we can get a GNFA G' with two states s.t.
 L(G) = L(G'). Formally, by induction on the number of states in G.

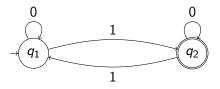
DFA to Regex: Summary

Lemma

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip (G, q^*) are equivalent. rip (G, q^*) has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q* arbitrarily each time), we can get a GNFA G' with two states s.t.
 L(G) = L(G'). Formally, by induction on the number of states in G.
- For a 2-state GNFA G', L(G') = L(R), where $R = \rho(q_0, q_F)$.

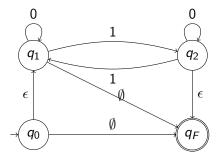
æ

<ロト <部ト < 注ト < 注ト



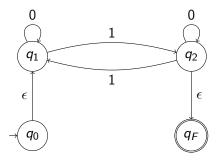
æ

(日) (同) (三) (三)



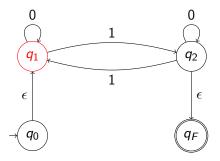
æ

<ロト <部ト < 注ト < 注ト



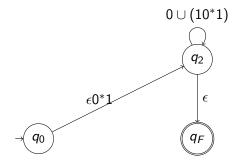
æ

<ロト <部ト < 注ト < 注ト



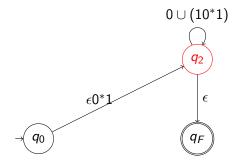
æ

- 《圖》 《문》 《문》



æ

- 4 聞 と 4 臣 と 4 臣 と



Generalized NFA Converting DFA to GNFA Converting GNFA to Regular Expression

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

