$\frac{\mathrm{Quiz}\ 6}{\mathrm{CS}\ 373}$: Theory of Computation

Date: December 7, 2010. Lecture Section AL2. Time limit: 15 minutes.

Name					
netid					
Discussion	Tu 2-2:50	Tu 3-3:50	Tu 4-4:50	W 4-4:50	W 5-5:50

Pick the correct alternative from among the choices (A), (B), and (C) provided for each question below. Each question is worth 1 point.

- 1. Let G be a grammar in Chomsky Normal Form. Let $w_1, w_2 \in L(G)$ such that $|w_1| = |w_2|$.
 - (A) Any derivation of w_1 has exactly the same number of steps as any derivation of w_2 .
 - (B) Some derivations of w_1 maybe shorter than some derivations of w_2 .
 - (C) Different derivations of w_1 have different lengths.
- 2. Consider the language $L = \{a^i b^j a^i b^j \mid i, j \geq 0\}$. Consider the following "proof" that L satisfies the pumping lemma. Let p be the pumping length. Choose $z = a^p b a^p b$. Consider a division of z, where $u = a^{p-1}$, v = a, w = b, x = a and $y = a^{p-1}b$. Clearly $uv^i wx^i y$ is in L for every i.
 - (A) This is an incorrect proof because all divisions of z have not been considered.
 - (B) This is an incorrect proof because all possible z have not been considered.
 - (C) This is a correct proof.
- 3. Consider the language $L = \{a^n b^n c^n \mid n \geq 0\}$. Consider the following "proof" that L does not satisfy the pumping lemma. Let $p \geq 1$ be the pumping length. Choose $z = a^p b^p c^p$. Consider the division of z, where $u = \epsilon$, v = a, $w = \epsilon$, $x = \epsilon$, and $y = a^{p-1} b^p c^p$. Clearly $uv^0 wx^0 y$ is not in L.
 - (A) This is an incorrect proof because all divisions of z have not been considered.
 - (B) This is an incorrect proof because all possible z have not been considered.
 - (C) This is a correct proof.

- 4. Consider the language $L = \{a^i b^j c^k d^\ell \mid \text{either } i = 0 \text{ or } j = k = \ell\}$. Consider the following "proof" that L is not context-free. Let $L_1 = L \cap L(aa^*b^*c^*d^*)$. Now define a homomorphism h such that $h(a) = \epsilon$, h(b) = b, h(c) = c, and h(d) = d. $L_2 = h(L_1) = \{b^n c^n d^n \mid n \geq 0\}$. Since L_2 is not context-free, L is not context-free.
 - (A) L is context-free and hence this is an incorrect proof.
 - (B) L is not context-free, but this is an incorrect proof because context-free languages are not closed under intersection.
 - (C) L is not context-free and this is a correct proof.
- 5. Let L be a context-free language. Let $L^R = \{w^R \mid w \in L\}$ where w^R denotes the reverse of the string w.
 - (A) L^R is definitely not context-free.
 - (B) L^R may not be context-free, depending on L.
 - (C) L^R is definitely context-free.
- 6. Suppose L_1 is a context-free language and L_2 is a non-context-free language, such that $L_1 \cap L_2 = \emptyset$. Then $L_1 \cup L_2$ is
 - (A) Necessarily context-free
 - (B) Necessarily non-context-free
 - (C) May or may not be context-free