$\frac{\text{Quiz } 3}{\text{CS } 373: \text{ Theory of Computation}}$

Date: October 19, 2010. Lecture Section AL2. Time limit: 15 minutes.

Name					
netid					
Discussion	Tu 2-2:50	Tu 3-3:50	Tu 4-4:50	W 4-4:50	W 5-5:50

Pick the correct alternative from among the choices (A), (B), and (C) provided for each question below. Each question is worth 1 point.

1. Consider the following Turing Machine: $M = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$, where

$$\begin{array}{ll} \delta(q_0,0) = (q_1,1,\mathsf{R}) & \delta(q_1,1) = (q_2,1,\mathsf{L}) \\ \delta(q_2,1) = (q_1,1,\mathsf{R}) & \delta(q_1,\sqcup) = (q_{\mathsf{acc}},\sqcup,\mathsf{R}) \end{array}$$

As always, we assume for cases not mentioned above, $\delta(q, a) = (q_{rej}, \sqcup, R)$. Suppose the current configuration is $1q_00$. The next configuration is

- (A) $1q_11$
- (B) $11q_1 \sqcup$
- (C) $10q_11$

2. Consider the following Turing Machine: $M = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}), \text{ where } q_{\mathsf{acc}} = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}), q_{\mathsf{acc}} = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, q_{\mathsf{acc}} = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, q_{\mathsf{acc}} = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{q_0, q_{\mathsf{acc}}, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{q_0, q_{\mathsf{acc}}, q_{\mathsf{acc}}, q_{\mathsf{acc}}\}, \{q_0, q_{\mathsf{acc}}, q_{\mathsf{acc}}, q_{\mathsf{acc}}\}, \{q_0, q_{\mathsf{acc$

$$\begin{array}{ll} \delta(q_0,0) = (q_1,1,{\sf R}) & \qquad \delta(q_1,1) = (q_2,1,{\sf L}) \\ \delta(q_2,1) = (q_1,1,{\sf R}) & \qquad \delta(q_1,\sqcup) = (q_{\sf acc},\sqcup,{\sf R}) \end{array}$$

As always, we assume for cases not mentioned above, $\delta(q, a) = (q_{rej}, \sqcup, R)$. What can we say about the Turing machine M?

- (A) M halts on all inputs
- (B) M never halts on some inputs
- (C) M does not halt on any input

3. How many Turing Machines are there with only three states q_0 q_{acc} and q_{rej} , with $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \sqcup\}$?

- (A) 3
- (B) 18^3
- (C) infinitely many

- 4. Suppose M_1 and M_2 are two TMs such that $L(M_1) \subseteq L(M_2)$. Then
 - (A) on every input on which M_1 does not halt, M_2 does not halt.
 - (B) on every input on which M_1 halts, M_2 halts too.
 - (C) on every input which M_1 accepts, M_2 halts.
- 5. If L_1 and L_2 are Turing-recognizable then $L_1 \cup L_2$ is
 - (A) Decidable
 - (B) Turing-recognizable but may not be decidable
 - (C) May not be Turing-recognizable
- 6. If L is decidable, then
 - (A) L and \overline{L} must be Turing-recognizable.
 - (B) L must be Turing-recognizable, but \overline{L} need not be.
 - (C) exactly one of L and \overline{L} is Turing-recognizable.