$\frac{\text{Quiz 1}}{\text{CS 373: Theory of Computation}}$

Date: September 23, 2010. Lecture Section AL2. Time limit: 15 minutes.

Name					
netid					
Discussion	Tu 2-2:50	Tu 3-3:50	Tu 4-4:50	W 4-4:50	W 5-5:50

Pick the correct alternative from among the choices (A), (B), and (C) provided for each question below. Each question is worth 1 point.

- 1. Let $D = (Q, \{0, 1\}, \delta, q_0, F)$ be an DFA such that $L(D) = \{0, 1\}^*$. Then,
 - (A) Every state must be a final state, i.e., F = Q.
 - (B) No state is a final state, i.e. $F = \emptyset$.
 - (C) Neither of the above
- 2. Consider $r = a(ab^*a \cup b^*)^*$. Which of the following is true about L(r)?
 - (A) $a \in L(r)$
 - (B) $aa \in L(r)$
 - (C) There is at least one b in every string belonging to L(r)
- 3. For $n \ge 0$, let $L_n = \{a^i b^k \mid i \ge n, \ 0 < k < n\}$.
 - (A) L_n is regular, independent of the value of n
 - (B) L_n is not regular, independent of the value of n
 - (C) L_n is regular only for small values of n
- 4. Let L_1 be an infinite regular language. Let L_2 be an infinite set such that $L_1 \subseteq L_2$.
 - (A) L_2 is definitely regular because L_1 is regular
 - (B) L_2 is never regular because L_2 is infinite
 - (C) L_2 may or may not be regular

- 5. Consider $L_1, L_2 \subseteq \Sigma^*$ such that L_1 is a finite language and $L_1 \cup L_2$ is regular.
 - (A) L_2 is definitely regular
 - (B) L_2 may not be regular
 - (C) $L_2 = (L_1 \cup L_2) \setminus L_1$
- 6. Recall from homework 3, for a string w, w^R denotes the reverse of w. For $L\subseteq \Sigma^*$, recall that $L^R=\{w^R\mid w\in L\}$. Suppose L^R is not regular. Then,
 - (A) L is definitely regular
 - (B) L may or may not be regular
 - (C) L is definitely not regular