“Unsupervised learning is arguably more typical of human and animal learning...” --- Kelvin Murphy, former professor at UBC

Credit: wikipedia
Last time

- Linear Regression (II)
- Nearest Neighbor Regression
Objectives

- The curse of dimensionality
- Multivariate normal distribution
- Unsupervised learning
- Clustering (I)
Objectives
First let’s take a look at a 3D object

Is there more fruit than peel?

Credit: Prof. David Varodayan
First take a look at a 3D object

Is there more fruit or more peel?

Total Volume: 2^3
Vol. of fruit: $(2-2\varepsilon)^3$
Vol. of peel: $2^3-(2-2\varepsilon)^3$
Fraction of peel: $1-(1-\varepsilon)^3$

If $\varepsilon = 0.05$ fraction of peel ≈ 0.143
What if we have a d-dimensional orange?

Is there always more fruit?

A. YES
B. NO
In arbitrary d-dimension

- Total amount of orange
- Amount of fruity part
- Fraction of orange that is peel
The curse of dimensions

- If a dataset is uniformly distributed in a high-dimensional cube (or other shape), majority of data is far from the origin.

- The above can be roughly proved by calculating the expected distance from the origin.
The Expected distance from the origin in d-dimensional cube

$$E[\mathbf{x}^T \mathbf{x}] = E\left[\sum_{i=1}^{d} x_i^2 \right] = \sum_{i=1}^{d} E[x_i^2]$$

$$= \sum_{i=1}^{d} \int_{\text{cube}} x_i^2 P(\mathbf{x}) d\mathbf{x}$$

Assuming the independence of each x_i

$$P(\mathbf{x}) = P(x_1)P(x_2)\ldots P(x_d)$$

The general law of continuous probability density

$$\int_{-\infty}^{+\infty} P(x_i) dx_i = 1$$

$$\Rightarrow E[\mathbf{x}^T \mathbf{x}] = \sum_{i=1}^{d} \int_{-1}^{1} x_i^2 P(x_i) dx_i$$
A lot of data is far from the origin.

On average, data points are $d/3$ away from the origin (using square of distance)

$$
E[\mathbf{x}^T \mathbf{x}] = \sum_{i=1}^{d} \int_{-1}^{1} x_i^2 P(x_i) \, dx_i \\
= \frac{1}{2} \sum_{i=1}^{d} \int_{-1}^{1} x_i^2 \, dx_i \\
= \frac{d}{3}
$$
What do high-dimensional cubes look like?
What do high-dimensional cubes look like?

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Cube Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line segment</td>
</tr>
<tr>
<td>2</td>
<td>Square</td>
</tr>
<tr>
<td>3</td>
<td>Cube</td>
</tr>
<tr>
<td>4</td>
<td>Tesseract</td>
</tr>
<tr>
<td>5</td>
<td>5-cube</td>
</tr>
<tr>
<td>6</td>
<td>6-cube</td>
</tr>
<tr>
<td>7</td>
<td>7-cube</td>
</tr>
<tr>
<td>8</td>
<td>8-cube</td>
</tr>
<tr>
<td>9</td>
<td>9-cube</td>
</tr>
<tr>
<td>10</td>
<td>10-cube</td>
</tr>
<tr>
<td>11</td>
<td>11-cube</td>
</tr>
<tr>
<td>12</td>
<td>12-cube</td>
</tr>
<tr>
<td>13</td>
<td>13-cube</td>
</tr>
<tr>
<td>14</td>
<td>14-cube</td>
</tr>
<tr>
<td>15</td>
<td>15-cube</td>
</tr>
</tbody>
</table>

Credit: Wiki
What does a convex object K in high dimensions look like?

The spikes are outliers in high dimension.

A general convex set

With this scaling, most of the volume of K is located around the Euclidean sphere of radius \sqrt{n}. Indeed, taking traces on both sides of the second equation in (1.2), we obtain

$$\mathbb{E} \|X\|_2^2 = n.$$

Therefore, by Markov’s inequality, at least 90% of the volume of K is contained in a Euclidean ball of size $O(\sqrt{n})$. Much more powerful concentration results are known—the bulk of K lies very near the sphere of radius \sqrt{n} and the outliers have exponentially small volume. This is the content of the two major results in high-dimensional convex geometry, which we summarize in the following theorem.
Distance between points grows with increasing dimensions

\[
E[d(u, v)^2] = E[(u - v)^T(u - v)] \\
= E[u^T u] + E[v^T v] - 2E[u^T v]
\]
High dimensional histogram of a data set is unhelpful

- Most bins will be empty
- Some bins will have single data
- Very few will have more than one data point
Dealing with high dimensional data

- Collect as much data as possible
- Cluster data into blobs/cluster
- Fit each blob with simple probability model
Multivariate normal distribution

- Extension of the normal distribution to multiple dimensions

- Bivariate normal distribution looks like this:

\[
f(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X} \right)^2 - 2\rho \left(\frac{x-\mu_X}{\sigma_X} \right) \left(\frac{y-\mu_Y}{\sigma_Y} \right) + \left(\frac{y-\mu_Y}{\sigma_Y} \right)^2 \right]}
\]

\(-1 < \rho < 1\)
A multivariate normal random vector \mathbf{X} of dimension d has this pdf:

$$P(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp\left(-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right)$$

where

$\mu = E[\mathbf{x}]$ is d-dimensional mean vector

$\Sigma = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^T]$ is the $d \times d$ positive definite covariance matrix
Multivariate MLE

Given a d-dimensional data set \(\{x\} \) we can fit a multivariate normal model using MLE

\[
P(x | \theta) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)
\]

\[\theta = \{\mu, \Sigma\}\]
Unsupervised learning

- **Unsupervised learning** means knowledge discovery from the feature vectors **without labels**.

- Unsupervised learning may include:
 - Discovering **latent factors**
 - Discovering **clusters**
 - Discovering **graph structure**
 - Matrix completion
Q. Is this true?

- **Principal Component Analysis** is an unsupervised learning method.

 A. TRUE
 B. FALSE
Dimension Reduction is unsupervised learning

- For example in Principal Component Analysis, no labels are assumed about the data.
- PCA discovers the latent factors---the important eigenvectors of the covariance matrix.
The family of unsupervised learning

Dimension reduction
- t-SNE

Clustering
- K-means

Graph structure
- Gaussian Graph model
Clustering as an unsupervised learning method

- Clustering identifies specific structure called clusters.

- In clustering data is not labeled. By identifying clusters, the method assigns cluster membership labels to data.

- A cluster is formed so that
 - Items within a cluster are “close” to each other
 - Items in different clusters are “far” from each other
 - Distance metric is important in clustering
Types of clustering method

- By input type:
 - **Similarity based clustering**: input is N x N similarity/distance matrix
 - **Feature based clustering**: input is N x D feature matrix

- By output type:
 - **Hierarchical clustering**
 - Top-down (divisive)
 - Bottom-up (agglomerative)
 - **Flat clustering**:
 - Mixture models, K-means clustering, Spectral clustering...
Hierarchical Clustering (I)

Divisive clustering

- Treat the whole dataset as a single cluster
- Then split the data set recursively until you get a satisfactory clustering
Hierarchical Clustering (II)

- Agglomerative clustering
 - Treat each data item as its own cluster
 - Then merge clusters until you get a satisfactory clustering
 - A “dendrogram” is created
Hierarchical Clustering example

- Agglomerative clustering of matrix of gene-tissue pairs of human samples.
- Columns are tissues; rows are genes
- Clustering is done for both directions
K-means clustering

- Pick a value \(k \) as the number of clusters
- Select \(k \) random cluster centers
- Iterate until convergence:
 - Assign each data to the nearest center
 - Update the center within the cluster

(1) (2) (3) (4)

Given a dataset \{0, 2, 4, 6, 24, 26\}, initialize the k-means clustering algorithm with 2 cluster centers c1 = 3 and c2 = 4. What are the values of c1 and c2 after one iteration of k-means?
Q. What are the values of c_1 and c_2?

Given a dataset $\{0, 2, 4, 6, 24, 26\}$, initialize the k-means clustering algorithm with 2 cluster centers $c_1 = 3$ and $c_2 = 4$. What are the values of c_1 and c_2 after two iterations of k-means?
What does k-means do mathematically?

- It’s an minimization of a cost function

\[\phi(\delta, c) = \sum_{i,j} \delta_{i,j} [(x_i - c_j)^T (x_i - c_j)] \]

\[= \sum_i \sum_j \sum_{k} \delta_{i,j} \| x_i - c_j \|^2 \delta_{i,j} = \begin{cases} 1 & \text{if } x_i \in \text{cluster } j \\ 0 & \text{otherwise} \end{cases} \]

- Cost is defined by the sum of squared distances of each data point from its cluster center
K-means clustering example: Iris

True labels

2 clusters
K-means clustering example: Iris

True labels vs. 3 clusters
K-means clustering example: Iris

True labels

4 clusters
How to choose the value of k?

- Sometimes we have the knowledge from the data set.
- Sometimes we have some other natural way to choose k.
- Otherwise given the cost function, we may perform clustering for many k values and choose k from the knee of the cost function empirically.
Choose k from the cost function curve

Which is best?
Still depends on the application

Usually we want fewer clusters.
Some variants of k-means clustering

- Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster.
- Hierarchical k-means speeds up clustering for very large datasets.
- K-mediods allows clustering of data that cannot be averaged.
Q. What is different between a hierarchical clustering (hc) and k-means?

A. HC produces dendrogram while k-means results in only flat clusters.
B. HC doesn’t need to choose number of clusters while k-means needs that step.
C. HC has higher order time complexity than k-means
D. All the above.
K-means clustering example: Portugal consumers

- The dataset consists of the annual grocery spending of 440 customers.
- Each customer's spending is recorded in 6 features:
 - fresh food, milk, grocery, frozen, detergents/paper, delicatessen.
- Each customer is labeled by: 6 labels in total
 - Channel (Channel 1 & 2) (Horeca 298, Retail 142)
 - Region (Region 1, 2 &3) (Lisbon 77, Oporto 47, Other 316)
Oporto, Portugal
Visualization of the data

- Visualize the data with scatter plots
- We do see that some features are correlated.
- But overall we do not see significant structure or groups in the data.
Do kmeans and choose k through the cost function

It’s good to pick a k around the knee:
I choose 6 for it matches the number of labels
Visualization of the data (PCA)

- PCA does show some separation.
- Colors are the clusters
- Data points show large range of dynamics!
Do log transform of the data

- Log transform the data
- Do scatter plot matrix after the log transform
- Do the kmeans and color the clusters identified by k-means
PCA after log transformation: Clusters

Colors show the clusters identified by k-means
PCA after log transformation

Colors show the Channel-region labels

What does this tell us?
PCA after log transformation

Colors show the Channel-region labels

Channels differ a lot
Assignments

❖ Read Chapter 11 of the textbook
❖ Week 14 Module
❖ Next time: Clustering (II) & intro. Of Markov Chain
Additional References

- Kelvin Murphy, “Machine learning, A Probabilistic perspective”
See you next time

See You!