

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" – Prof. M.H. DeGroot

Credit: wikipedia

Warm up

- 1) Ways of forming a queue with 10 students $10\times9\times8\times-\cdots1=10!$
- 2) Ways of forming a queue with 5 students
 out of 10 students

 (0! (N-K)! (0×9×8×7×6×5!
- 3) Ways of forming a team of 5 from

 10 students. $\frac{10!}{5!5!} = \frac{N!}{K!(N-K)!}$

Which is larger?

1)
$$\binom{120}{90}$$
 2) $\binom{120}{30}$

A. 1) $\sqrt{\frac{120!}{30!}}$ $\frac{120!}{30!90!}$

B. 2) $\sqrt{\frac{90!}{30!}}$ $\sqrt{\frac{30!90!}{30!90!}}$

C. None $\binom{N}{K} = \binom{N-K}{N-K}$

Objectives

- **Probability
 - * More probability calculation
 - ** Conditional Probability
 - ****Bayes rule**
 - ****Independence**

Senate Committee problem

The United States Senate contains **two** senators from each of the **50** states. If a committee of eight senators is selected at random, what is the probability that it will contain at least one of the two senators from **IL**?

$$E^{c}$$
: Now of 16 senators got in $P(E) = 1 - P(E^{c})$ $|E^{c}| = {98 \choose 8}{7 \choose 0}$ $|SZ| = {100 \choose 8}$

$$P(E) = P(Ea) + P(E6)$$

$$1 \text{ Sen. from } 1L$$

$$2 \text{ Sen from } 2L$$

$$1 \text{ Teal} = \frac{98}{7} \cdot \binom{2}{1}$$

$$1 \text{ Teal} = \frac{98}{(8)} \cdot \binom{2}{1}$$

$$1 \text{ Teal} = \frac{98}{(8)} \cdot \binom{2}{1}$$

Probability: Birthday problem

** Among 30 people, what is the probability that at least 2 of them celebrate their birthday on the same day? Assume that there is no February 29 and each day of the year is equally likely to be a birthday.

36530

$$P(E)=1-P(E')|52|=$$

$$P(E')=\frac{|E'|}{|52|}=\frac{P(\frac{365}{36})}{\frac{365}{36}}$$

2/2 2/2 2/2 2/1 2/1 2/2

**Motivation of conditional probability

```
If a person in CS tested positive for Covid, how likely does this person have the disease?

T: test positive

D: has the disease

P(DIT)
```

****Example:**

An insurance company knows in a population of 100 thousands females, 89.835% expect to live to age 60, while 57.062% can expect to live to 80. Given a woman at the age of 60, what is the probability that she lives to 80?

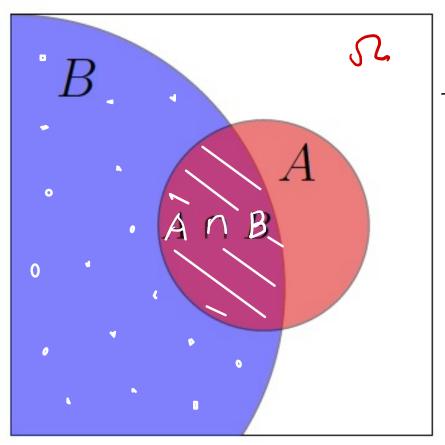
$$|\mathcal{D}| = 100,000$$

$$|\mathcal{E}| = 10$$

**Given the condition she is 60 already, the size of the sample space for the outcomes has changed to

89,835 instead of 100,000

** The probability of **A** given **B**



$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$P(B) \neq 0$$

The "Size" analogy

Credit: Prof. Jeremy Orloff & Jonathan Bloom

A: a woman lives to 80

$$P(A|B) = \frac{57,062}{89,835} = 0.6352$$

B: a woman is at 60 now

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{87,062}{89,835/(60)k}$$

While
$$P(A) = \frac{57,062}{100,000} = 0.57062$$

Conditional Probability: die example

Throw 5-sided fair die twice.

$$A: max(X, Y) = 4$$

$$B: \overline{min(X,Y)} = 2$$

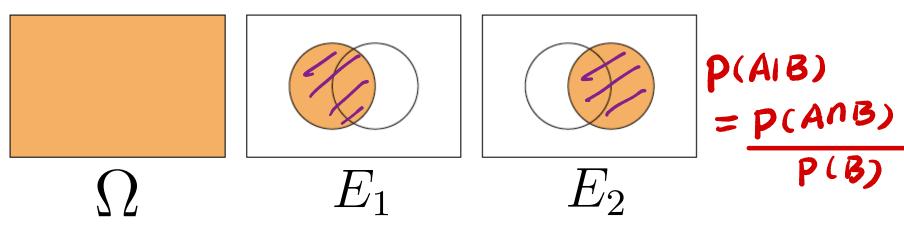
$$P(A|B) = ?$$

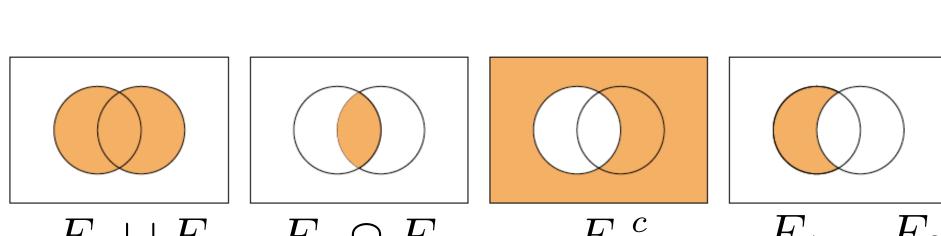
$$P(A|B) = \frac{|E| = 2}{|D| = 7} = \frac{2}{7}$$

Conditional probability, that is?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$$
Still a probability! It satisfies the three axioms
$$P(A|B) + P(A^{c}|B) = ? \mid P(A \cap A) = ? \mid P(A \cap A$$

Venn Diagrams of events as sets





Multiplication rule using conditional probability

***** Joint event

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$$

$$\Rightarrow P(A \cap B) = P(A|B)P(B)$$

Multiplication using conditional probability

vegetable

$$P(A \cap B) = P(A|B)P(B)$$

$$P(S^{\text{purp}}) \text{ soup } \underbrace{\begin{array}{c} 3 \\ \text{Soup } \end{array}}_{\text{meat}} \text{ fish } P(soup \cap meat) = \\ P(meat|soup)P(soup) \\ \text{meat} = 0.5 \times 0.8 = 0.4$$

Simulation of Conditional Probability

http://www.randomservices.or g/random/apps/ConditionalPr obabilityExperiment.html

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Assignments

- ** Work on Module Week 3 on Canvas
- ** Next time: More on independence and conditional probability

Laws of Sets

Commutative Laws

 $A \cap B = B \cap A$

 $A \cup B = B \cup A$

Associative Laws

 $(A \cap B) \cap C = A \cap (B \cap C)$

 $(A \cup B) \cup C = A \cup (B \cup C)$

Distributive Laws

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Laws of Sets

Idempotent Laws

 $A \cap A = A$

 $A \cup A = A$

Identity Laws

 $A \cup \emptyset = A$

 $A \cap U = A$

 $A \cup U = U$

 $A \cap \emptyset = \emptyset$

Involution Law(A c) c = A

Complement Laws

 $A \cup A^c = U$

 $A \cap A^c = \emptyset$

 $U^c = \emptyset$

 ϕ c = U

De Morgan's Laws

 $(A \cap B)^c = A^c \cup B^c$

(A \cup B) c = A c \cap B c

U is the complete set

See you next time

See You!

