

"Probabilistic analysis is mathematical, but intuition dominates and guides the math" – Prof. Dimitri Bertsekas

Credit: wikipedia

Last time

More summary statistics coefficient Correlation Correlation coeff. for prediction

Warm up

A game of chance

Warm up (II)

**** Fill the blanks:**

"I am an avid vegetarian and I enjoy eating all day long, people admire my appetite and like to watch me eat." I am a PANPA. How many ways are there to rearrange these 5 letters? ______. If you draw 2 letters from them, how many outcomes (order matters) are there that are without "a"?

3×3

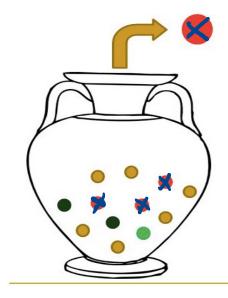
Objectives

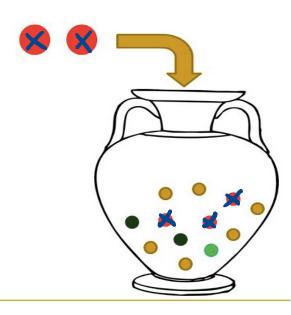
- **Probability a first look
 - ****** Outcome and Sample Space
 - *** Event**
 - ** Probability
 - Probability axioms & Properties
 - ****** Calculating probability

Outcome

**An outcome A is a possible result of a random repeatable experiment

Random: uncertain, Nondeterministic, ...



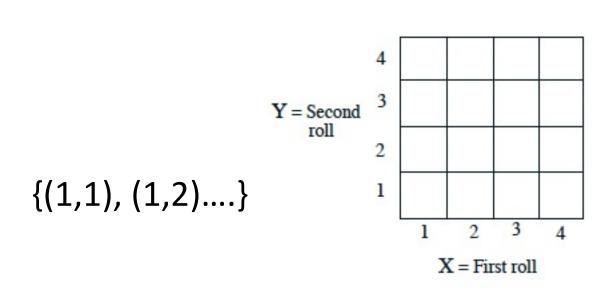


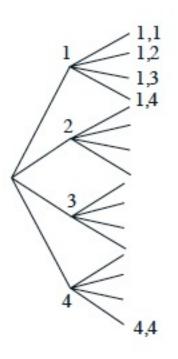
Sample space

- *The Sample Space, Ω, is the set of all possible outcomes (Mutually associated with the experiment
- **** Discrete or Continuous**

Sample Space example (1)

- ** Experiment: we roll a 4sided-die twice
- **** Discrete** Sample space:

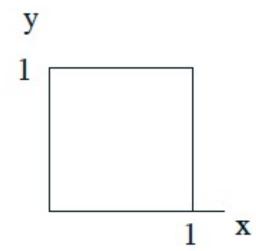




Sample Space example (2)

- ** Experiment: Romeo and Juliet's date
- **** Continuous** Sample space:

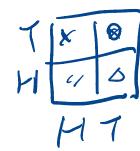
$$\Omega = \{(x, y) \mid 0 \le x, y \le 1\}$$



Sample Space depends on experiment (3)

- ** Different coin tosses
 - ★ Toss a fair coin

****** Toss a fair coin twice



** Toss until a head appears

Sample Space depends on experiment (4)

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement?

Q1. Sample Space

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the number of unique outcomes in the sample space?

Q2.Sample Space

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the number of unique outcomes in the sample space?

A. 5 B. 6 C. 9

Sample Space in real life

- **Possible outrages of a power network
- ****Possible mutations in a gene**
- ****A bus' arriving time**

Event

** An event **E** is a subset of the sample space Ω

FA 3

} A1 A2 A3 }

- ** So an event is a set of outcomes that is a subset of Ω , ie.
 - ** Zero outcome
 - ****** One outcome
 - ** Several outcomes
 - ****** All outcomes

The same experiment may have different events

- ** When two coins are tossed
 - ** Both coins come up the same?
-) H H TT}

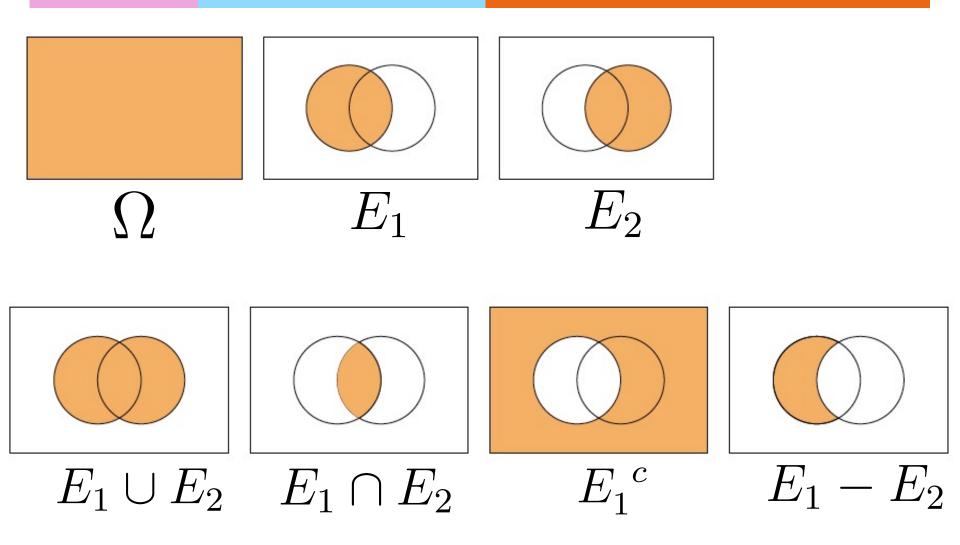
** At least one head comes up?

Some experiment may never end

** Experiment: Tossing a coin until a head appears

E: Coin is tossed at least 3 times
This event includes infinite # of outcomes

Venn Diagrams of events as sets



Combining events

** Say we roll a six-sided die. Let

$$E_{1} = \{1,2,5\} \ and \ E_{2} = \{2,4,6\}$$

$$\Re \ \text{What is} \ E_{1} \cup E_{2} \qquad \Rightarrow \{1,2,3,4,5,6\}$$

$$\Re \ \text{What is} \ E_{1} \cap E_{2} \qquad \{2\}$$

$$\Re \ \text{What is} \ E_{1} - E_{2} \qquad \{1,5\}$$

$$\Re \ \text{What is} \ E_{1}^{c} = \Omega - E_{1}$$

$$\{3,4,6\}$$

Frequency Interpretation of Probability

Given an experiment with an outcome A, we can calculate the probability of A by repeating the experiment over and over

$$P(A) = \lim_{N \to \infty} \frac{number\ of\ time\ A\ occurs}{N}$$

※ So,

$$\sum_{A_i \in \Omega} 0 \le P(A) \le 1$$

$$\sum_{A_i \in \Omega} P(A_i) = 1$$

Axiomatic Definition of Probability

- ** A probability function is any function P that maps sets to real number and satisfies the following three axioms:
 - 1) Probability of any event E is non-negative

$$P(E) \ge 0$$

2) Every experiment has an outcome

$$P(\Omega) = 1$$

Axiomatic Definition of Probability

3) The probability of disjoint events is additive

$$P(E_1 \cup E_2 \cup ... \cup E_N) = \sum_{i=1}^N P(E_i)$$

$$Mutually \underset{i}{\ell} = \omega \text{ for all } i \neq j$$

$$if E_i \cap E_j = \emptyset \text{ for all } i \neq j$$

$$P(E_i \cup E_i)$$

$$= P(E_i) + P(E_i)$$

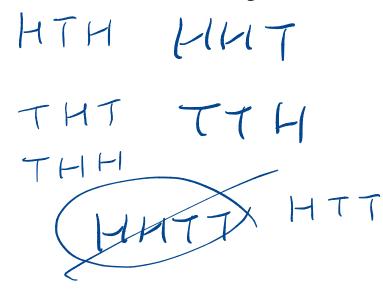
Q3. Disjoint/Mutual Exclusive

****** Toss a coin 3 times

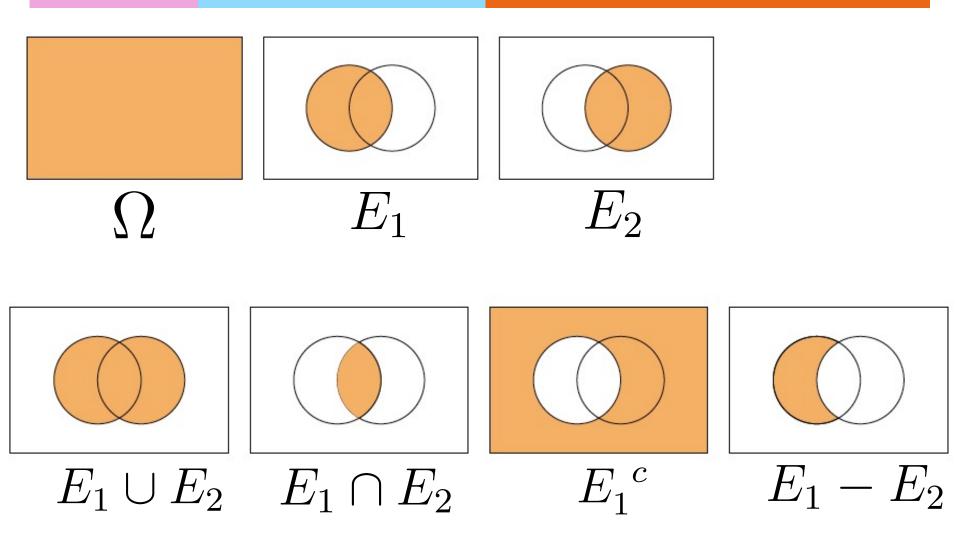
The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint.

A. True

B. False



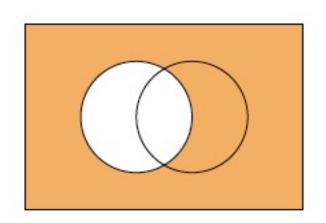
Venn Diagrams of events as sets



Properties of probability

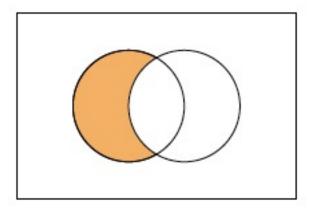
** The complement

$$P(E^c) = 1 - P(E)$$



****** The difference

$$P(E_1 - E_2) = P(E_1) - P(E_1 \cap E_2)$$



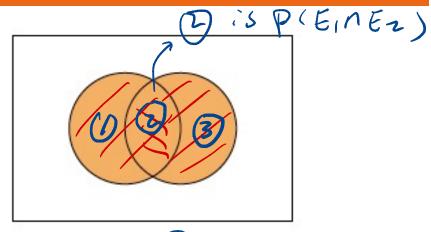
Properties of probability

****** The union

$$P(E_1 \cup E_2) =$$

$$P(E_1) + P(E_2)$$

$$-P(E_1 \cap E_2)$$



The union of multiple E plus UEV = O+(9+3)

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$$

$$- P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1)$$

$$+ P(E_1 \cap E_2 \cap E_3)$$

The Calculation of Probability

- ** Discrete countable finite event
- ****** Discrete countable infinite event
- ****** Continuous event

Counting to determine probability of countable finite event

** From the last axiom, the probability of event **E** is the sum of probabilities of the disjoint outcomes

$$P(E) = \sum_{A_i \in E}^{\mathbf{N}} P(A_i)$$

If the outcomes have equal probability, E:3 is S=10 S=10

Probability using counting: (1)

** Tossing a fair coin twice:

Prob. that it appears the same?

 $P(t) = \frac{1}{2}$ Pears?

** Prob. that at least one head appears?

Probability using counting: (2)

* 4 rolls of a 5-sided die:

E: they all give different numbers

** Number of outcomes that make the event happen: しししししし

****** Number of outcomes in the sample space

* Probability:
$$P(E) = 5^{4}$$

$$(\mathcal{I}) = 5^{4}$$

$$(\mathcal{I}) = 5^{4}$$

$$(\mathcal{I}) = 5^{4}$$

Probability using counting: (2)

****** What about N-1 rolls of a N-sided die?

E: they all give different numbers

** Number of outcomes that make the event happen: $N \times N^{-1} \times 2$

** Number of outcomes in the sample space

Probability:

Probability by reasoning with the complement property

#If P(E^c) is easier to calculate

$$P(E) = 1 - P(E^c)$$

Probability by reasoning with the complement property

** A person is taking a test with **N** true or false questions, and the chance he/she answers any question right is 50%, what's probability the person answers **at least** one question right?

$$E^{c} = nome is right$$

$$|E^{c}| = |N| ||x|| = 2^{N}$$

$$|O(5)^{N}|$$

$$P(E) = |-P(E^{c}) = |-O(5)^{N}|$$

Probability by reasoning with the union property

****** If E is either E1 or E2

$$P(E) = P(E_1 \cup E_2) =$$

$$P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Probability by reasoning with the properties (2)

** A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on 15th of a month?

Counting may not work

**This is one important reason to use the method of reasoning with properties

What if the event has infinite outcomes

- ** Tossing a fair coin until head appears
 - ** Coin is tossed at least 3 times

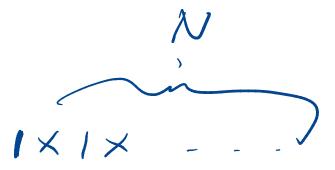
This event includes infinite # of outcomes.

And the outcomes don't have equal probability.

TTH, TTTH, TTTTH....

Assignments

- ** Work on Module Week2,
- ₩ Quiz1,
- ₩ HW1
- ₩ HW2



$$\frac{7}{2} \times 2 - \frac{7}{2} \times 2 = \left(\frac{1}{2}\right)^{2}$$

Commutative $A \cap B = B \cap A$

AUB=BUA

Associative

(ANB) NC = ANIBNC)

(AUB)UC=AU(BUC)

Distributive

An(Buc) = (AnB)U(Anc)

AU (BNC) = (AUB) N (AUC)

Idempotent $A \cap A = A$ $A \cup A = A$ $A \cup A = A$ $A \cup \phi = A$

 $A \cup \phi = A$ $A \cap \phi = \emptyset$ $A \cup \mathcal{R} = \mathcal{R}$ $A \cap \mathcal{R} = A$

Complement AUA' = JZ ANA = P sc = 0 φ = 52 De Morgans $(A \cap B) = A \cup B^{c}$ (AUB) = ACOB

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

