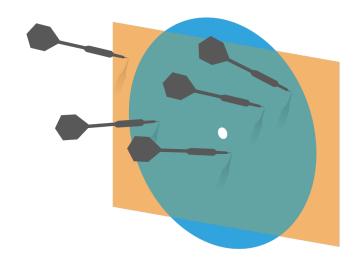
Probability and Statistics for Computer Science



"Correlation is not Causation" but Correlation is so beautiful!

Credit: wikipedia

Last time

- ***** Mean
- **** Standard deviation**
- **** Variance**
- Standardizing data
- * Interquartile

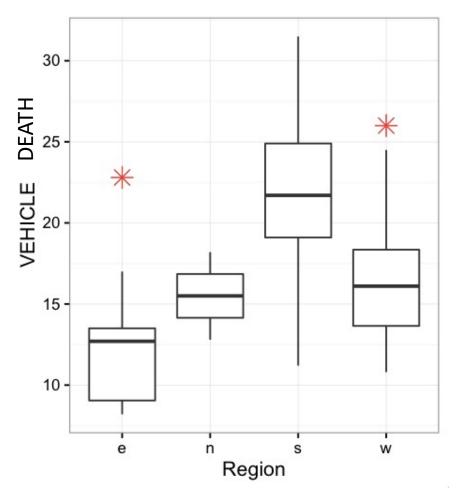
Objectives

- ** Boxplots, comparison btw summary satistics
- ****** Scatter plots, Correlation Coefficient
- ** Visualizing relationships
 Heatmap, 3D bar, Time series plots,

Box plots

- ****** Boxplots
 - ** Simpler than histogram
 - ****** Good for outliers
 - ** Easier to use for comparison

Vehicle death by region



Data from https://www2.stetson.edu/~jrasp/data.htm

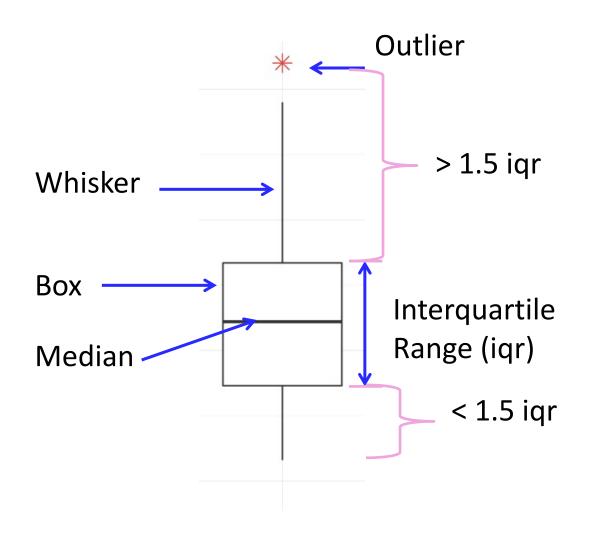
Boxplots details, outliers

How to

define

outliers?

(the default)



Sensitivity of summary statistics to outliers

- ** mean and standard deviation are very sensitive to outliers
- ** median and interquartile range are not sensitive to outliers

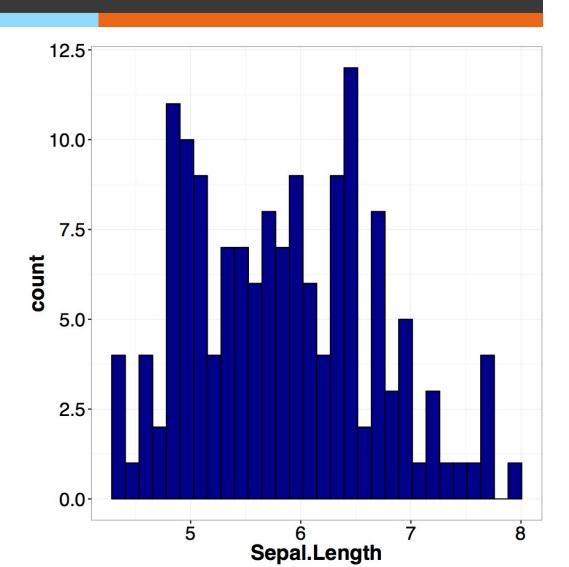
Modes

- ** Modes are peaks in a histogram
- # If there are more than 1 mode, we should be curious as to why

Multiple modes

** We have seen the "iris" data which looks to have several peaks

Data: "iris" in R

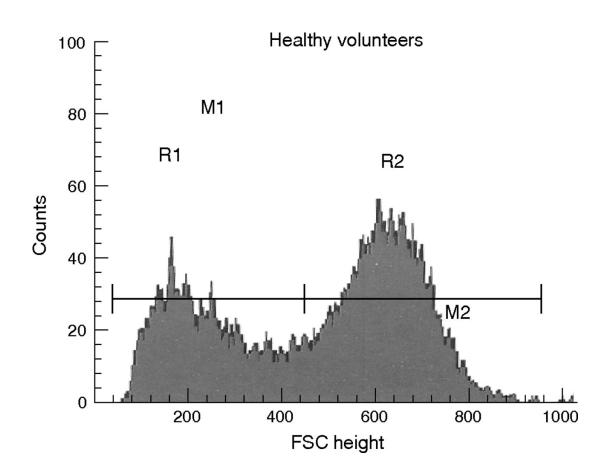


Example Bi-modes distribution

** Modes may indicate multiple populations

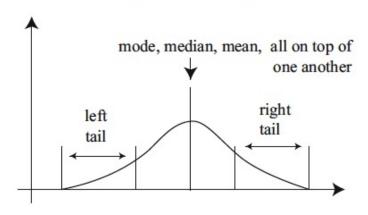
Data: Erythrocyte cells in healthy humans

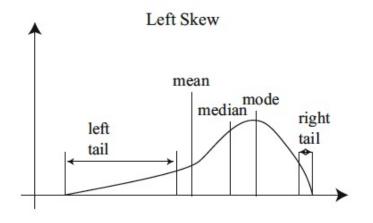
Piagnerelli, JCP 2007

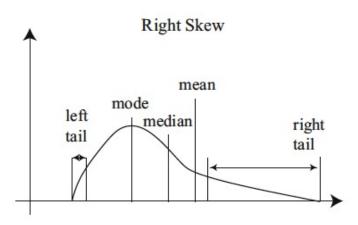


Tails and Skews

Symmetric Histogram







Credit: Prof.Forsyth

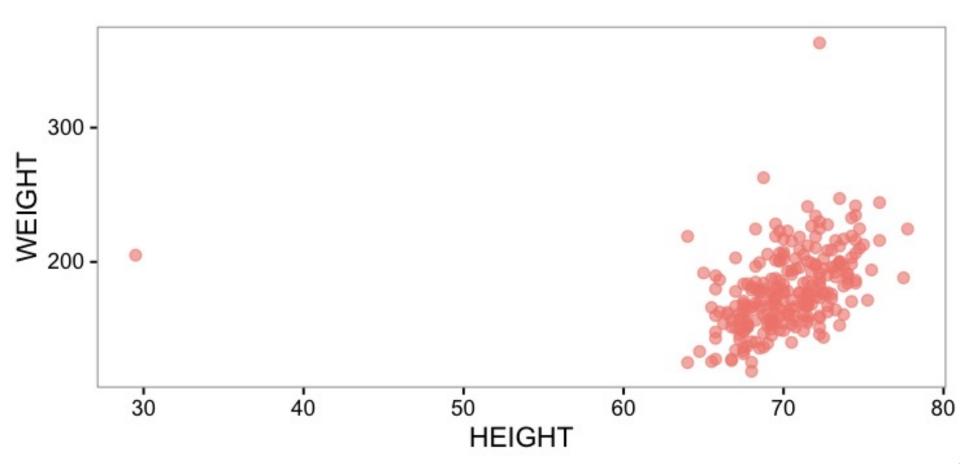
Relationship between data features

Example: Does the weight of people relate to their height?

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

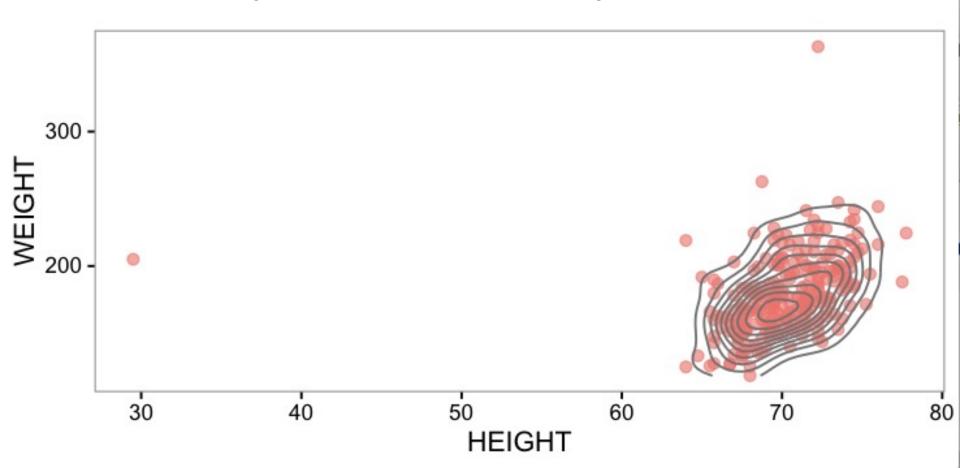
Scatter plot

** Body Fat data set



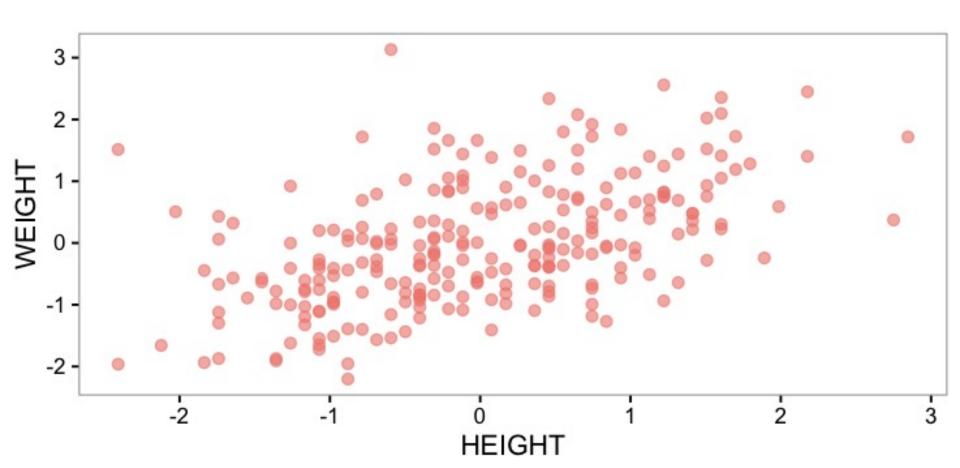
Scatter plot

****** Scatter plot with density

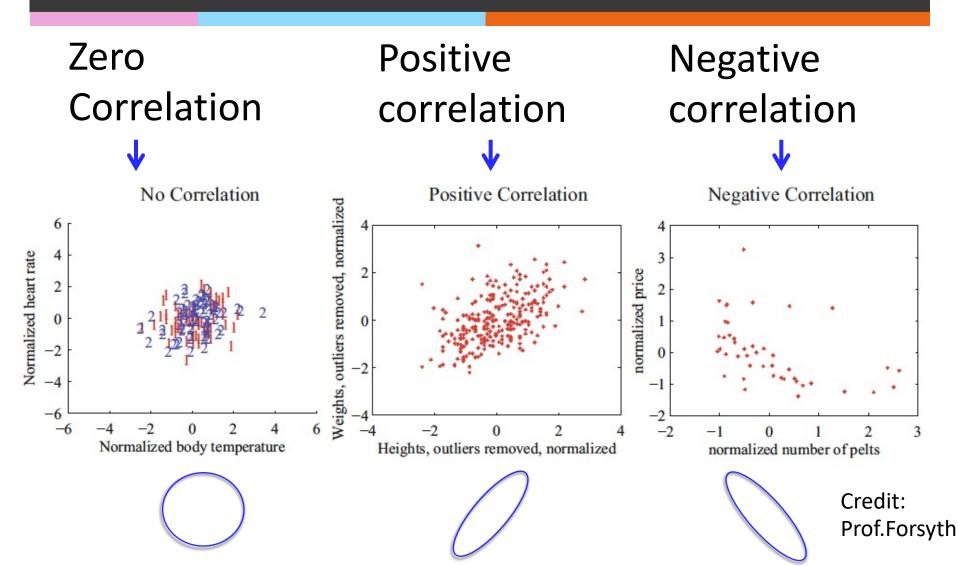


Scatter plot

** Removed of outliers & standardized



Correlation seen from scatter plots



What kind of Correlation?

- ** Line of code in a database and number of bugs
- Frequency of hand washing and number of germs on your hands
- **# GPA and hours spent playing video games**
- # earnings and happiness

Credit: Prof. David Varodayan

Correlation doesn't mean causation

** Shoe size is correlated to reading skills, but it doesn't mean making feet grow will make one person read faster.

Correlation Coefficient

- # Given a data set $\{(x_i, y_i)\}$ consisting of items (x_1, y_1) ... (x_N, y_N) ,
 - * Standardize the coordinates of each feature:

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})} \qquad \widehat{y_i} = \frac{y_i - mean(\{y_i\})}{std(\{y_i\})}$$

** Define the correlation coefficient as:

$$corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^{N} \widehat{x_i} \widehat{y_i}$$

Correlation Coefficient

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})} \qquad \widehat{y_i} = \frac{y_i - mean(\{y_i\})}{std(\{y_i\})}$$

$$corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^{N} \widehat{x_i} \widehat{y_i}$$

$$= mean(\{\widehat{x}_i\widehat{y}_i\})$$

Q: Correlation Coefficient

- ** Which of the following describe(s) correlation coefficient correctly?
 - A. It's unitless
 - B. It's defined in standard coordinates
 - C. Both A & B

$$corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^{N} \widehat{x_i} \widehat{y_i}$$

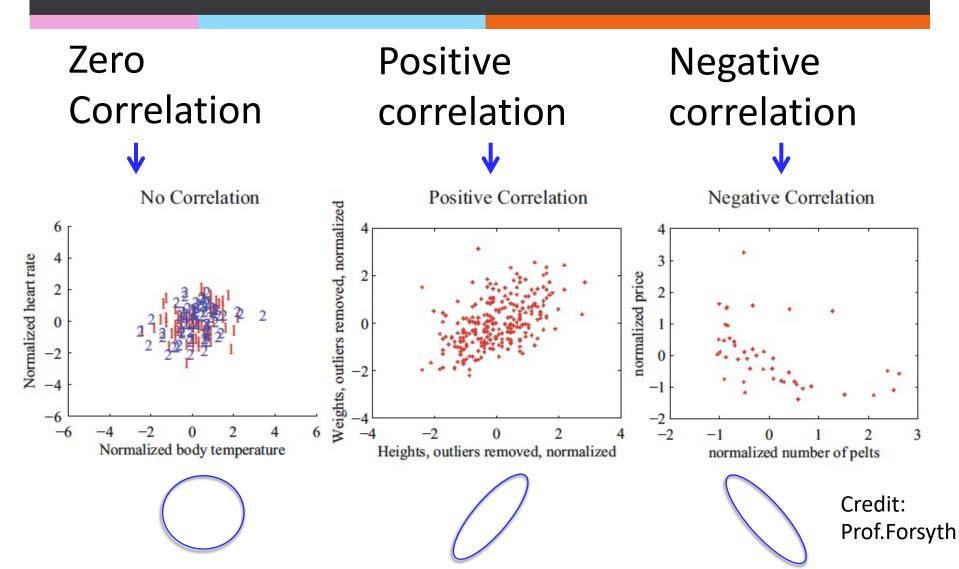
A visualization of correlation coefficient

https://rpsychologist.com/d3/correlation/

In a data set $\{(x_i, y_i)\}$ consisting of items $(x_1, y_1) \dots (x_N, y_N),$

 $corr(\{(x_i,y_i)\}) > 0$ shows positive correlation $corr(\{(x_i,y_i)\}) < 0$ shows negative correlation $corr(\{(x_i,y_i)\}) = 0$ shows no correlation

Correlation seen from scatter plots



** The correlation coefficient is symmetric

$$corr(\{(x_i, y_i)\}) = corr(\{(y_i, x_i)\})$$

** Translating the data does NOT change the correlation coefficient

** Scaling the data may change the sign of the correlation coefficient

$$corr(\{(a \ x_i + b, \ c \ y_i + d)\})$$

= $sign(a \ c)corr(\{(x_i, y_i)\})$

** The correlation coefficient is bounded within [-1, 1]

$$corr(\{(x_i,y_i)\}) = 1$$
 if and only if $\widehat{x_i} = \widehat{y_i}$

$$corr(\{(x_i,y_i)\}) = -1$$
 if and only if $\widehat{x_i} = -\widehat{y_i}$

Q. Which of the following has correlation coefficient equal to 1?

- A. Left and right
- B. Left
- C. Middle

Concept of Correlation Coefficient's bound

** The correlation coefficient can be written as $1 \stackrel{N}{\smile}$

$$corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^{N} \widehat{x}_i \widehat{y}_i$$

$$corr(\{(x_i, y_i)\}) = \sum_{i=1}^{N} \frac{\widehat{x_i}}{\sqrt{N}} \frac{\widehat{y_i}}{\sqrt{N}}$$

****** It's the inner product of two vectors

$$\left\langle \frac{\widehat{x_1}}{\sqrt{N}}, \quad ... \quad \frac{\widehat{x_N}}{\sqrt{N}} \right
angle \; ext{and} \; \left\langle \frac{\widehat{y_1}}{\sqrt{N}}, \quad ... \quad \frac{\widehat{y_N}}{\sqrt{N}}
ight
angle$$

Inner product

** Inner product's geometric meaning:

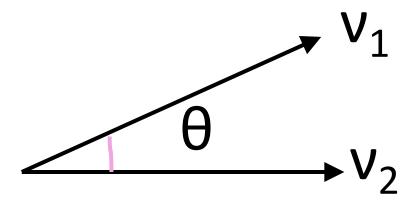
$$|\nu_1| |\nu_2| \cos(\theta)$$

** Lengths of both vectors

$$\mathbf{v_1} = \left\langle \frac{\widehat{x_1}}{\sqrt{N}}, \dots \frac{\widehat{x_N}}{\sqrt{N}} \right\rangle \qquad \mathbf{v_2} = \left\langle \frac{\widehat{y_1}}{\sqrt{N}}, \dots \frac{\widehat{y_N}}{\sqrt{N}} \right\rangle$$
 are 1

Bound of correlation coefficient

$$|corr(\{(x_i, y_i)\})| = |cos(\theta)| \le 1$$

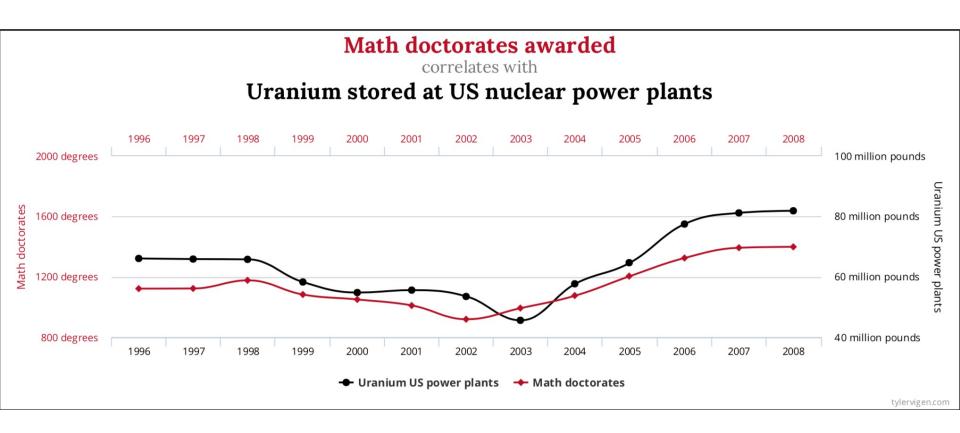


$$\mathbf{v_1} = \left\langle \frac{\widehat{x_1}}{\sqrt{N}}, \dots \frac{\widehat{x_N}}{\sqrt{N}} \right\rangle \quad \mathbf{v_2} = \left\langle \frac{\widehat{y_1}}{\sqrt{N}}, \dots \frac{\widehat{y_N}}{\sqrt{N}} \right\rangle$$

- **** Symmetric**
- ****** Translating invariant
- ** Scaling only may change sign
- ** bounded within [-1, 1]

Using correlation to predict

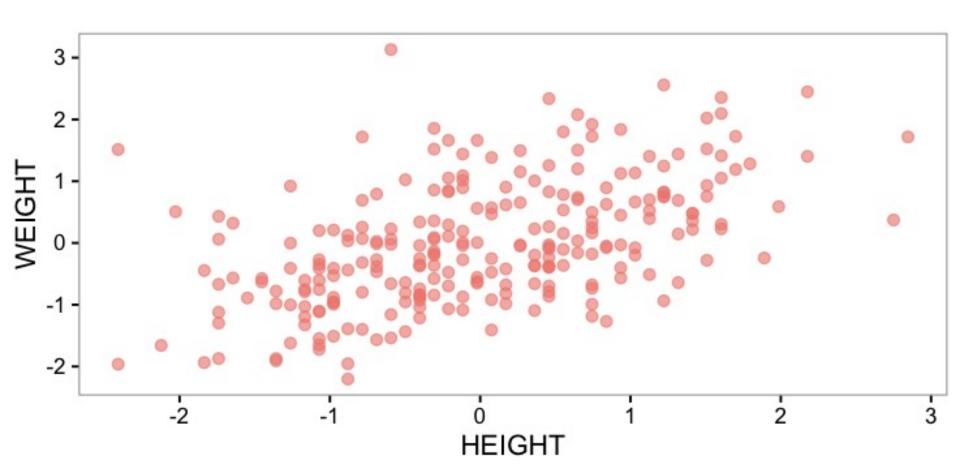
**** Caution!** Correlation is **NOT** Causation



Credit: Tyler Vigen

How do we go about the prediction?

** Removed of outliers & standardized



Using correlation to predict

** Given a correlated data set $\{(x_i, y_i)\}$

we can predict a value y_0^p that goes with x_0 a value

** In standard coordinates $\{(\widehat{x_i}, \widehat{y_i})\}$

we can predict a value $\widehat{y_0}^p$ that goes with $\widehat{x_0}$ a value

\mathbf{Q} :

** Which coordinates will you use for the predictor using correlation?

- A. Standard coordinates
- B. Original coordinates
- C. Either

Linear predictor and its error

** We will assume that our predictor is linear

$$\widehat{y}^p = a \ \widehat{x} + b$$

** We denote the prediction at each $\widehat{x_i}$ in the data set as $\widehat{y_i}^p$

$$\widehat{y_i}^p = a \ \widehat{x_i} + b$$

st The error in the prediction is denoted $\,u_i$

$$u_i = \widehat{y_i} - \widehat{y_i}^p = \widehat{y_i} - a \ \widehat{x_i} - b$$

Require the mean of error to be zero

We would try to make the mean of error equal to zero so that it is also centered around 0 as the standardized data:

Require the variance of error is minimal

Require the variance of error is minimal

Here is the linear predictor!

$$\widehat{y}^p = r \widehat{x}$$

Correlation coefficient

Prediction Formula

****** In standard coordinates

$$\widehat{y_0}^p = r \widehat{x_0}$$
 where $r = corr(\{(x_i, y_i)\})$

** In original coordinates

$$\frac{y_0^p - mean(\{y_i\})}{std(\{y_i\})} = r \frac{x_0 - mean(\{x_i\})}{std(\{x_i\})}$$

Root-mean-square (RMS) prediction error

Given
$$var(\{u_i\}) = 1 - 2ar + a^2$$

& $a = r$

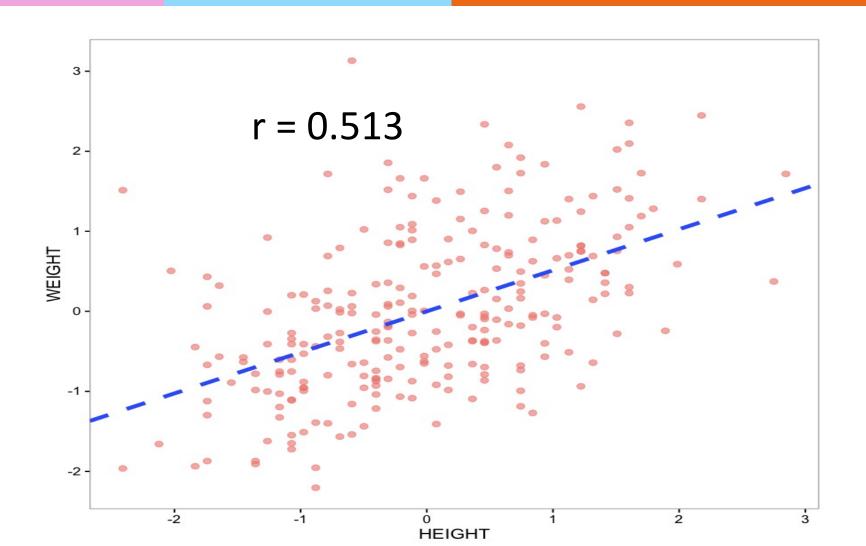
$$var(\{u_i\}) = 1 - r^2$$

$$RMS \ error = \sqrt{mean(\{u_i^2\})}$$
$$= \sqrt{var(\{u_i\})}$$
$$= \sqrt{1 - r^2}$$

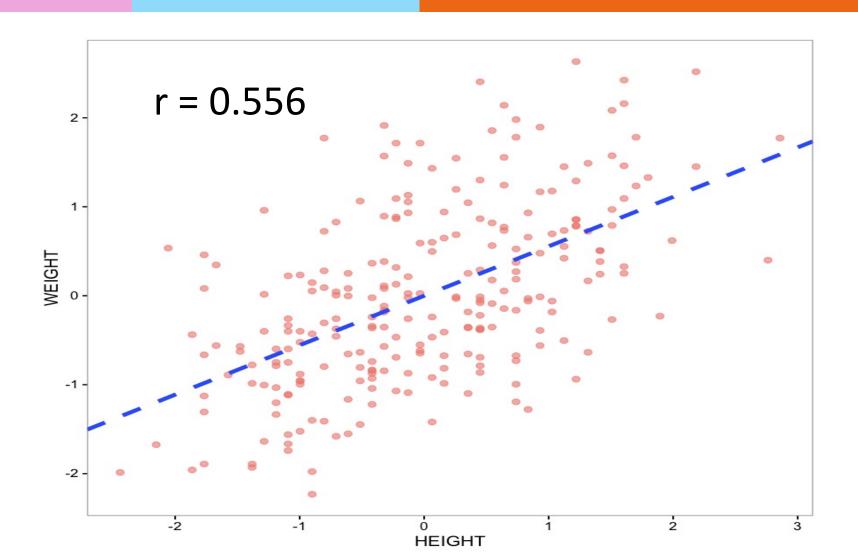
See the error through simulation

https://rpsychologist.com/d3/correlation/

Example: Body Fat data



Example: remove 2 more outliers



Heatmap

Display matrix of data via gradient of color(s)

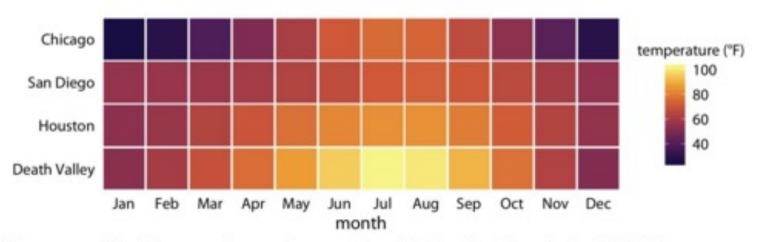
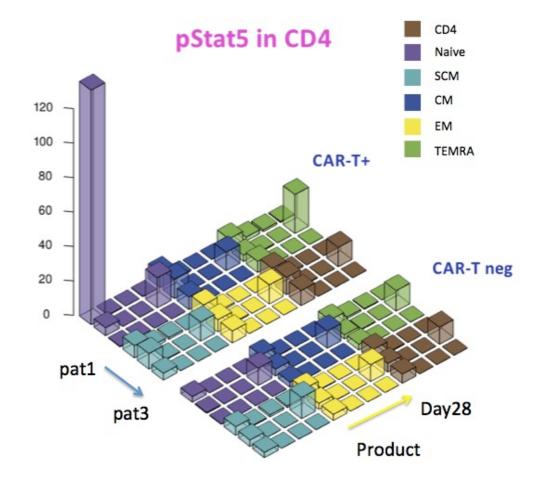


Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

3D bar chart

** Transparent 3D bar chart is good for small # of samples across categories



Relationship between data feature and time

Example: How does Amazon's stock change over

1 years?

take out the pair of

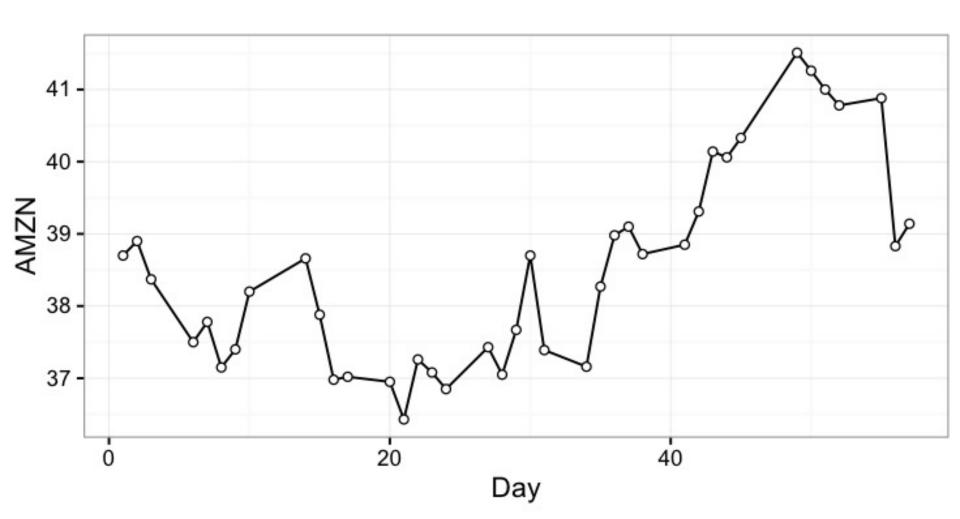
features

x: Day

y: AMZN

Day	AMZN	DUK	КО
1	38.700001	34.971017	17.874906
2	38.900002	35.044103	17.882263
3	38.369999	34.240172	17.757161
6	37.5	34.294985	17.871225
7	37.779999	34.130544	17.885944
8	37.150002	33.984374	17.9117
9	37.400002	34.075731	17.933777
10	38.200001	33.91129	17.863866
14	38.66	34.020917	17.845469
15	37.880001	33.966104	17.882263
16	36.98	34.130544	17.790276
17	37.02	34.240172	17.757161
20	36.950001	34.057458	17.672533
21	36.43	34.112272	17.705649
22	37.259998	34.258442	17.709329
23	37.080002	34.569051	17.639418
24	36.849998	34.861392	17.598945

Time Series Plot: Stock of Amazon



Assignments

- ** Quiz1 open at 4:30 today on PL
- Finish reading Chapter 2 of the textbook
- * Work on the Week 2 module on Canvas
- ** Next time: Probability a first look

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

