

"The statement that "The average US family has 2.6 children" invites mockery" – Prof. Forsyth reminds us about critical thinking

Credit: wikipedia

Last lecture

- ** Welcome/Orientation
- ****** Big picture of the contents
- ** Lecture 1 Data Visualization & Summary (I)
- **** Orientation quiz due today**

Warm up question:

- ** What kind of data is a letter grade?
- ** What do you ask for usually about the stats of an exam with numerical scores?

Objectives

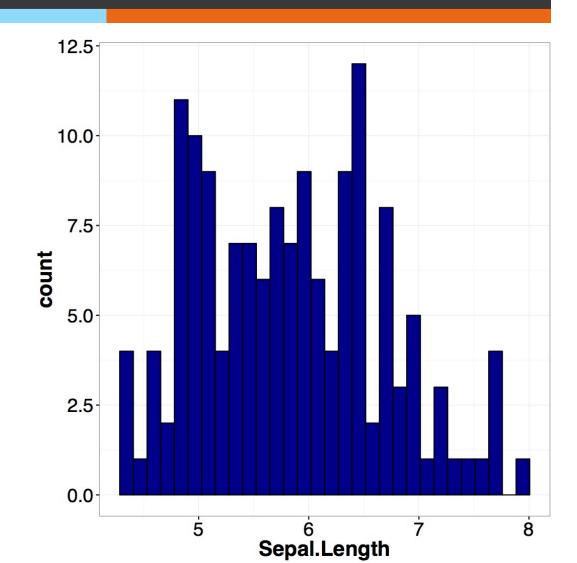
- ** Histograms
- **# Grasp Summary Statistics**

Visualizing Data with Histogram

* Histogram

A set of bars that are organized by bins that contains numerical data (discrete or continuous)

Data: "iris"

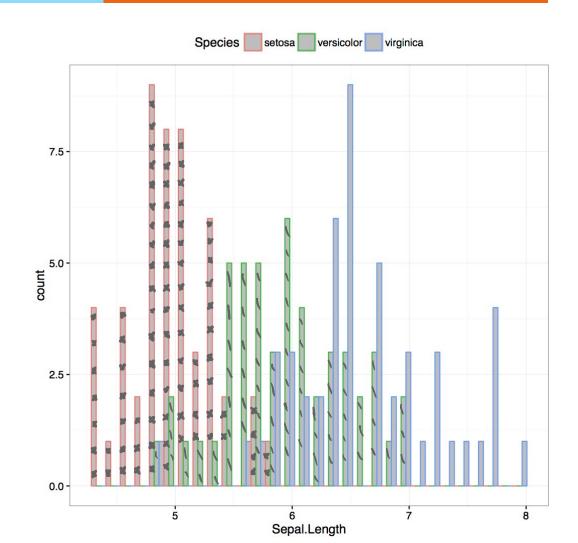


Visualizing Data with Histogram (II)

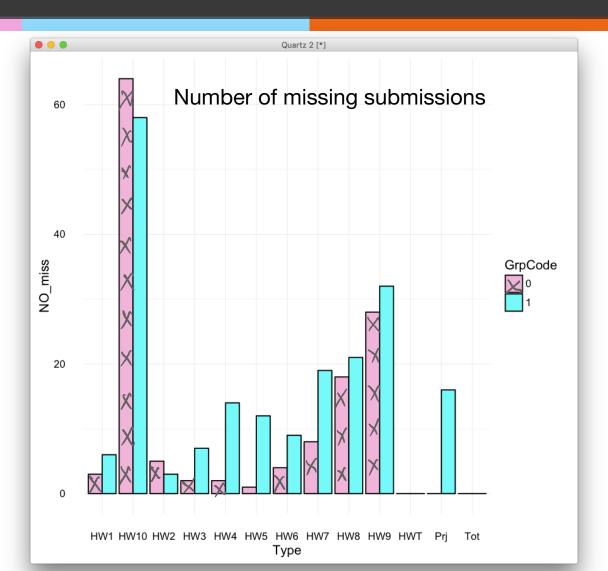
** Conditional histogram

Histogram generated by subsets of the data

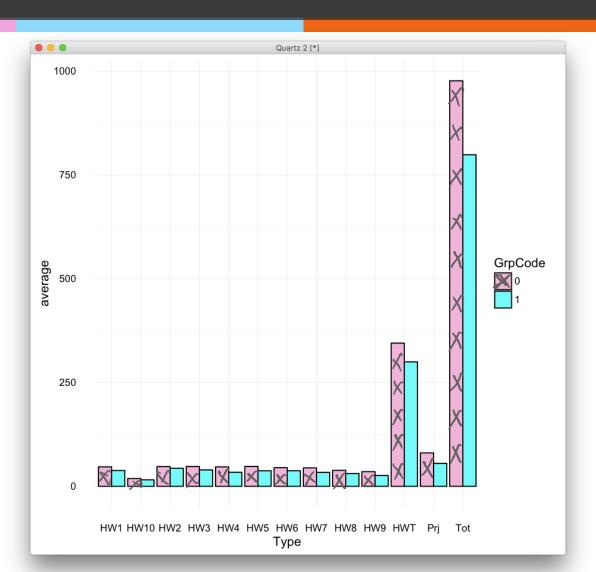
Data: "iris"



Which group has the higher total scores?



Which group has the higher total scores?



Summarizing 1D continuous data

For a data set $\{x\}$ or annotated as $\{x_i\}$, we summarize with:

**** Location Parameters**

Mean (M), Median, Mode

Scale parameters

Standard Interquartile deviation (5), range Variance (5²)

Summarizing 1D continuous data

* Mean

$$mean(\{x_i\}) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

It's the centroid of the data geometrically, by identifying the data set at that point, you find the center of balance.

$$\{x_i\}$$
 i $\in [1, 8]$
 $\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$
 $\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$
 $\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$
 $\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$
 $\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$
 $\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$

Properties of the mean

Scaling data scales the mean

$$mean(\{k \times x_i\}) = k \cdot mean(\{x_i\}) + c$$

$$mean(\{k \cdot x_i\}) = k \cdot mean(\{x_i\}) + c$$

** Translating the data translates the mean

$$mean(\{x_i + c\}) = mean(\{x_i\}) + c$$

Less obvious properties of the mean

** The signed distances from the mean

sum to 0
$$\sum_{i=1}^{N} (x_i - mean(\{x_i\})) = 0$$

** The mean minimizes the sum of the squared distance from any real value

i=1

$$\underset{\mu}{argmin} \sum_{i=1}^{N} (x_i - \mu)^2 = mean(\{x_i\})$$

Proof: $\sum_{i=1}^{N} (x_i - mean(ix_i)) = 0$

LHS =
$$\sum_{i=1}^{N} z_i - \sum_{i=1}^{N} mean(iz_i)$$

= $\sum_{i=1}^{N} z_i - N$, mean(iz_i)
= $\sum_{i=1}^{N} z_i - \sum_{i=1}^{N} \sum_{i=1}^{N} z_i$
= $\sum_{i=1}^{N} z_i - \sum_{i=1}^{N} z_i = 0$

Proof: Argmin $(\tilde{\Sigma}(x_i-M)^2)=$ mean(†xi)

Argument M that minimizes

the function that follows

A subscript M that

LHS = \hat{u} -> the special u that $u = \sum_{i=1}^{N} (x_i - u_i)^2$

To find \hat{u} . Set $\frac{df(u)}{du} = 0$ & Solve it

One way is to use the Chain rule $S(M) = \frac{\pi}{2} h(M) = \frac{\pi}{2} \frac{\pi^2}{2} (M) \quad S = \pi i - M$

 $f(M) = \sum_{i=1}^{n} h(M) = \sum_{i=1}^{n} 3^{n}(M) \quad 3^{n} = x_{i-1}M$ $\frac{df}{dx} = \frac{d}{dx} = \sum_{i=1}^{n} \frac{df}{dx} = \sum_{i=1}^{$

Proof: Argmin
$$(\sum_{i=1}^{N} (x_i - M)^2) = mean(ixi)$$

$$\frac{df(M)}{dM} = \sum_{i=1}^{N} \frac{dy}{dy} = \sum_{i=1}^{N} 2y \cdot (-1) = 0$$

$$h = y^{2}$$

$$\Rightarrow \sum_{i=1}^{N} y = 0$$

$$\Rightarrow \sum_{i=1}^{N} (x_{i} - M) = 0$$

$$\sum_{i=1}^{N} x_{i} - N \cdot M = 0$$

$$\frac{d^2f(M)}{d^2u}?$$

$$\hat{x} = \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}$$

Q1:

****** What is the answer for

 $mean(\{mean(\{x_i\})\})$?

A. $mean(\{x_i\})$ B. unsure C. 0

Standard Deviation (σ)

****** The standard deviation

$$std(\{x_i\}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2}$$

$$= \sqrt{mean(\{(x_i - mean(\{x_i\}))^2\})}$$

How much the data spreads

out wrt mean

$$Std = \sqrt{4} \sum_{i=1}^{4} d_i^2$$

Q2. Can a standard deviation of a dataset be -1?

A. YES B. NO

Properties of the standard deviation

Scaling data scales the standard deviation

$$std(\{k \cdot x_i\}) = |k| \cdot std(\{x_i\})$$

** Translating the data does NOT change the standard deviation

$$std(\{x_i + c\}) = std(\{x_i\})$$

Standard deviation: Chebyshev's inequality (1st look)

- ** At most $\frac{N}{k^2}$ items are k standard deviations (σ) away from the mean
- ** Rough justification: Assume mean =0

$$\frac{0.5N}{k^2} \qquad \frac{N-\frac{N}{k^2}}{0} \qquad \frac{0.5N}{k^2} \qquad \frac{86, k6, -86}{-86} \qquad \frac{0.5N}{k\sigma} \qquad \frac{86, k6, -86}{-86}$$

$$std = \sqrt{\frac{1}{N}}[(N - \frac{N}{k})0^2 + \frac{N}{k^2}(k\sigma)^2] = \sigma$$

Variance (σ^2)

** Variance = (standard deviation)²

$$var(\{x_i\}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2$$

Scaling and translating similar to standard

deviation
$$var(\{k \cdot x_i\}) = k^2 \cdot var(\{x_i\})$$

$$var(\{x_i + c\}) = var(\{x_i\})$$

Q3: Standard deviation

```
** What is the value of std(\{mean(\{x_i\})\})?

A. 0 B. 1 C. unsure
```

Standard Coordinates/normalized data

** The mean tells where the data set is and the standard deviation tells how spread out it is. If we are interested only in comparing the shape, we could

define:
$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

** We say $\{\widehat{x_i}\}$ is in standard coordinates

Q4: Mean of standard coordinates

mean($\{\widehat{x_i}\}$) is:

A. 1 B. 0 C. unsure

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q5: Standard deviation (σ) of standard coordinates

Std($\{\widehat{x_i}\}$) is:

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q6: Variance of standard coordinates

Variance of $\{\widehat{x_i}\}$ is:

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q7: Estimate the range of data in standard coordinates

Estimate as close as possible, 90% data is within:

$$\widehat{x}_i = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

$$\frac{N}{K^2} = \frac{1}{K^2} \leq 10\%$$

$$\geq 90\%$$

$$v = k6$$

Standard Coordinates/normalized data to μ =0, σ =1, σ ²=1

- ** Data in standard coordinates always has mean = 0; standard deviation =1; variance = 1.
- Such data is unit-less, plots based on this sometimes are more comparable
- ** We see such normalization very often in statistics

Median

- ** We first sort the data set $\{x_i\}$
- ****** Then *if* the number of items N is odd

median = middle item's value

if the number of items N is even

median = mean of middle 2 items' values

Properties of Median

Scaling data scales the median

$$median(\{k \cdot x_i\}) = k \cdot median(\{x_i\})$$

** Translating data translates the median

$$median(\{x_i + c\}) = median(\{x_i\}) + c$$

Percentile

- ** kth percentile is the value relative to which k% of the data items have smaller or equal numbers
- ****** Median is roughly the 50th percentile

Interquartile range

- # iqr = (75th percentile) (25th percentile)
- ** Scaling data scales the interquartile range

$$iqr(\{k \cdot x_i\}) = |k| \cdot iqr(\{x_i\})$$

** Translating data does **NOT** change the interquartile range

$$iqr(\{x_i + c\}) = iqr(\{x_i\})$$

Assignments

- **# HW1** due Mon. Sept. 6.
- ** Quiz 1 (open 4:30pm 9/1 next Wed until Sat.9/4)
- ** Reading upto Chapter 2.1
- ** Next time: more summary statistics and correlation coefficient

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

