

Conditional probability comes back in matrix!

Credit: wikipedia

Last time

Markov Chain (I)

Objective

- ** Markov Chain (II)
- ₩ Q/A
- ****** Concept review

Markov chain

** Markov chain is a process in which outcome of any trial in a sequence is conditioned by the outcome of the trial immediately preceding, but not by earlier ones.

** Such dependence is called chain dependence

Andrey Markov (1856-1922)

Markov chain in terms of probability

- ** Let X_0 , X_1 ,... be a sequence of discrete finite-valued random variables
- ** The sequence is a Markov chain if the probability distribution X_t only depends on the distribution of the immediately preceding random variable X_{t-1}

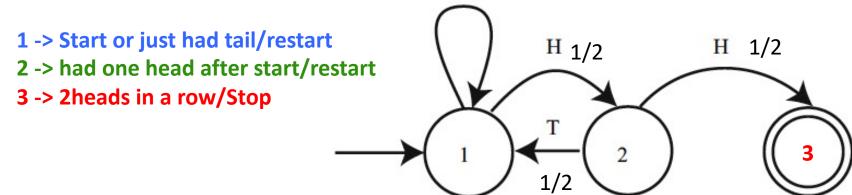
$$P(X_t|X_0...,X_{t-1}) = P(X_t|X_{t-1})$$

** If the conditional probabilities (transition probabilities) do **NOT change with time**, it's called **constant Markov chain**.

$$P(X_t|X_{t-1}) = P(X_{t-1}|X_{t-2}) = \dots = P(X_1|X_0)$$

Coin example

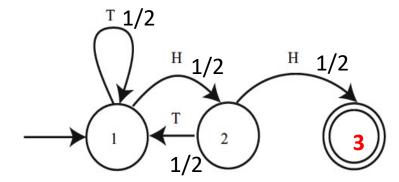
- * Toss a fair coin until you see two heads in a row and then stop, what is the probability of stopping after exactly n flips?
- W Use a state diagram, which is a directed graph. Circles are the states of likely outcomes. Arrow directions show the direction of transitions. Numbers over the arrows show transition probabilities.
 T 1/2



The model helps form recurrence formula

** Let p_n be the probability of stopping after **n** flips

$$p_1 = 0$$
 $p_2 = 1/4$ $p_3 = 1/8$ $p_4 = 1/8$...



The model helps form recurrence formula

** Let p_n be the probability of stopping after **n** flips

$$p_1 = 0$$
 $p_2 = 1/4$ $p_3 = 1/8$ $p_4 = 1/8$...

- ** If n > 2, there are two ways the sequence starts
 - ** Toss T and finish in n-1 tosses
 - * Or toss HT and finish in n-2 tosses
- **So, we can derive a recurrence relation**

$$p_n = \frac{1}{2}p_{n-1} + \frac{1}{4}p_{n-2}$$

$$P(T) \qquad P(HT)$$

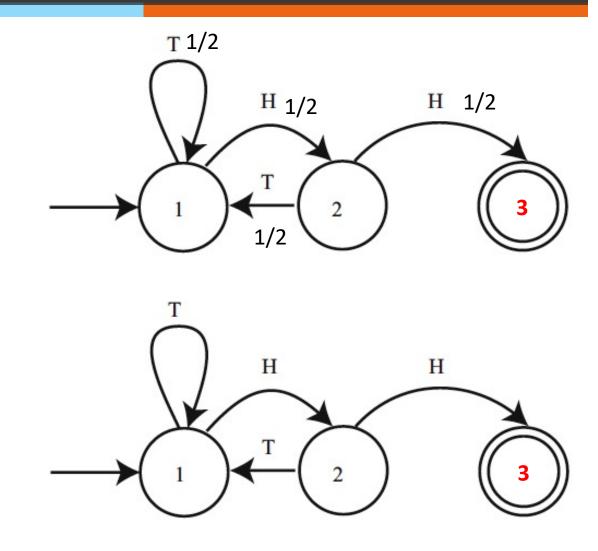
$$T_{1/2}$$

$$H_{1/2}$$

$$T_{1/2}$$

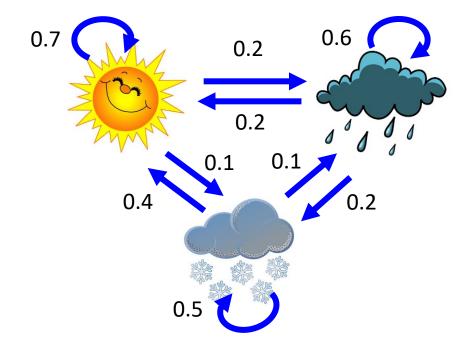
$$T_{1/2}$$

Transition probability btw states



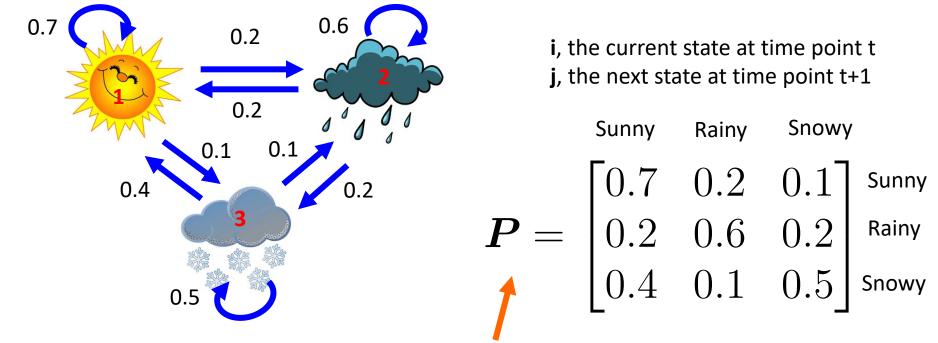
Transition probability matrix: weather model

** Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.



Transition probability matrix: weather model

** Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.



The transition probability matrix

Q: Is this TRUE?

For a constant Markov Chain, at any step t, the probability distribution among the states remain the same.

A. Yes.

B. No.

Q: The transition probabilities for a node sum to 1

A. Yes.

B. No.

Only the row sum is 1, that is: the probabilities associated with outgoing arrows sum to 1.

Transition probability matrix properties

** The transition probability matrix \boldsymbol{P} is a square matrix with entries p_{ij}

The transition probability matrix

Probability distributions over states

** Let π be a row vector containing the probability distribution over all the finite discrete states at t=0

$$\pi_i = P(X_0 = i)$$

For example: if it is rainy today, and today is t=0, then

$$\boldsymbol{\pi} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

Let P^(t) be a row vector containing the probability distribution over states at time point t

$$\mathbf{p}_i^{(t)} = P(X_t = i)$$

Propagating the probability distribution

Propagating from t=0 to t=1,

$$P_{j}^{(1)} = P(X_{1} = j)$$

$$= \sum_{i} P(X_{1} = j, X_{0} = i)$$

$$= \sum_{i} P(X_{1} = j | X_{0} = i) P(X_{0} = i)$$

$$= \sum_{i} p_{ij} \pi_{i}$$

In matrix notation,

$$oldsymbol{p}^{(1)} = oldsymbol{\pi} P$$

Probability distributions:

Suppose that it is rainy, we have the initial probability distribution.

$$\boldsymbol{\pi} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

** What are the probability distributions for tomorrow and the day after tomorrow?

$$\mathbf{p}^{(1)} = \mathbf{\pi} P$$

$$p^{(2)} = p^{(1)}P$$

Propagating to t= ∞

* We have just seen that

$$p^{(2)} = p^{(1)}P = (\pi P)P = \pi P^2$$

So, in general

$$\boldsymbol{p}^{(t)} = \boldsymbol{\pi} P^t$$

- # If one state can be reached from any other state in the graph, the Markov chain is called **irreducible** (single chain).
- ** Furthermore , if it satisfies: $\lim_{t \to \infty} \boldsymbol{\pi} P^t = \boldsymbol{S}$

then the Markov chain is stationary and **S** is the stationary distribution.

Stationary distribution

- ** The stationary distribution ${m s}$ has the following property: ${m s}P={m s}$
- * \boldsymbol{S} is a row eigenvector of \boldsymbol{P} with eigenvalue 1

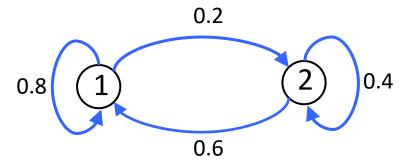
In the example of the weather model, regardless of the initial distribution,

$$\mathbf{S} = \lim_{t \to \infty} \boldsymbol{\pi} \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}^{\mathbf{t}} = \begin{bmatrix} \frac{18}{37} & \frac{11}{37} & \frac{8}{37} \end{bmatrix}$$

Example: Up-to-date or behind model

State 1: Up-to-date

State 2: Behind



What's the transition matrix?

If I start with $\pi = [0, 1]$, what is my probability of being up-to-date eventually? 3/4

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix}$$

Example: Up-to-date or behind model

$$SP = S \Rightarrow (SP)^T = S^T \Rightarrow P^T S^T = S^T$$
$$(P^T - I)S^T = 0$$

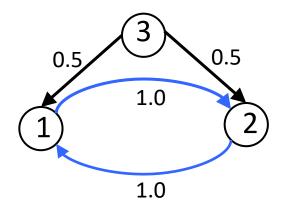
$$\left(\begin{bmatrix} 0.8 & 0.6 \\ 0.12 & 0.4 \end{bmatrix} - 1 \right) \otimes S^{T} = 0 \\
 \left(\text{ex } S^{T} = u \right) \\
 \left[\begin{array}{c} -0.2 & 0.6 \\ 0.2 & -0.6 \end{array} \right] u = 0 \quad u = \begin{bmatrix} u_{1} \\ u_{2} \end{array} \right] \\
 \left[\begin{array}{c} u_{1} + u_{2} = 1 \\ 1 \end{array} \right] \\
 \left[\begin{array}{c} u_{1} + u_{2} = 1 \\ 1 \end{array} \right] \\
 \left[\begin{array}{c} u_{1} + u_{2} = 4 \\ 1 \end{array} \right]$$

Example: Up-to-date or behind model

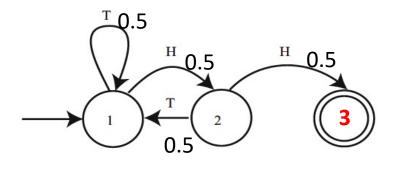
$$SP = S \Rightarrow (SP)^T = S^T \Rightarrow P^T S^T = S^T$$

 $(P^T - I)S^T = 0$

Examples of non-stationary Markov chains



Periodic

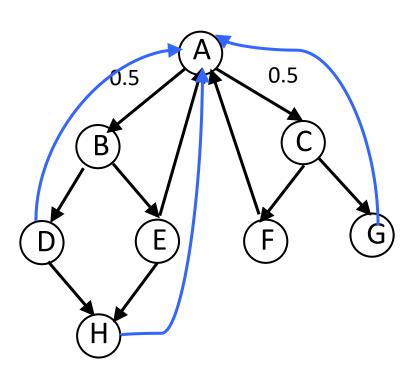


Absorbing

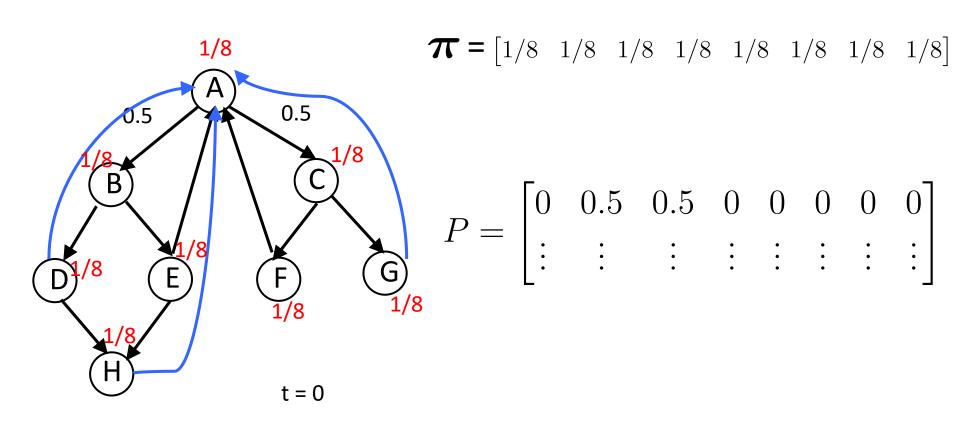
PageRank Example

- * How to rate web pages objectively?
- ** The PageRank algorithm by Page et al. made Google successful
- ** The method utilized **Markov chain model** and applied it to the large list of webpages.
- ** To illustrate the point, we use a small-size example and assume a simple **stationary model**.

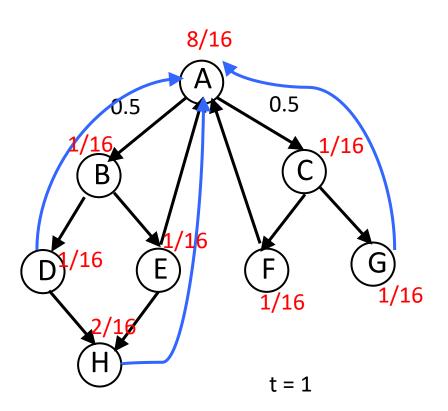
Suppose we are randomly surfing a network of webpages



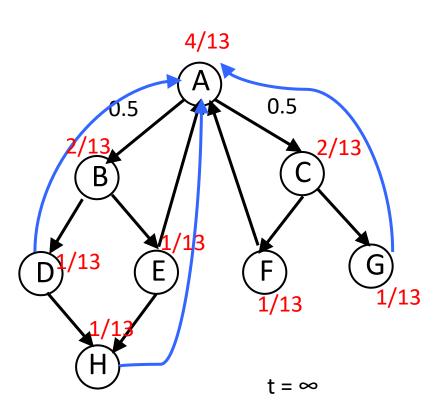
Initialize the distribution uniformly



Update the distribution iteratively



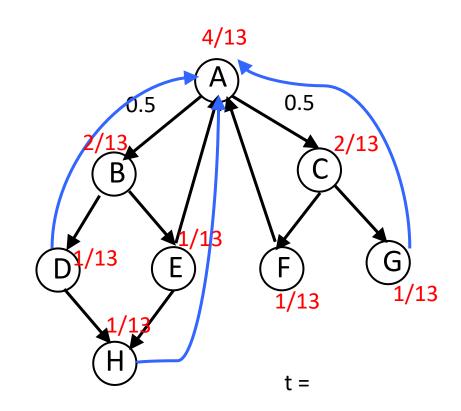
Until the stationary distribution



If the surfer get trapped

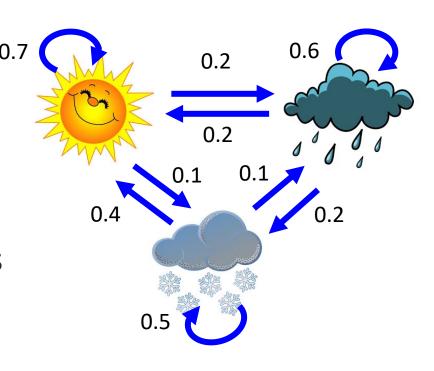
** Allow "teleport" with small probability from any page to another

** Or allow "teleport" with user input of URL



Diverse applications of Markov Model

- ****** Communication network
- ** Queue modeling
- * DNA sequence modeling
- ** Natural language processing
- Single-cell large data analysis
- # Financial/Economic model
- ***** Music



Final Exam

- ** Time: 1:30pm 12/13 Mon. Central Time
- # Duration: 3hrs
- **Content coverage: Ch1-14, except 8, details are on Canvas**
- Open book and lecture notes
- Format: 50 multiple choices, on PrairieLearn proctored by Staff on Zoom

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Kelvin Murphy, "Machine learning, A Probabilistic perspective"

Acknowledgement

Thank You!

