

"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Last time

- ****Curse of dimensions**
- ****Unsupervised learning**
- ****Clustering**

Q. Is k-means clustering deterministic?

A. Yes

B. No

Some issues with k-means clustering

- Sensitive to outlier
- ** Sensitive to the seeds (centroids)

Some issues with k-means clustering

** Sensitive to outlier: example

Some issues with k-means clustering

** Sensitive to the seeds (example)

K-means clustering example: Portugal consumers

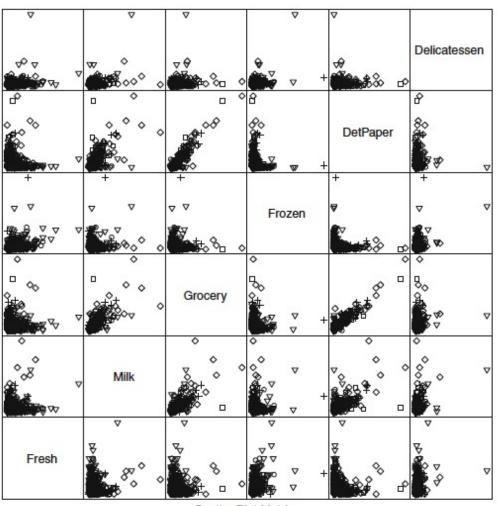
- ** The dataset consists of the annual grocery spending of 440 customers
- ****** Each customer's spending is recorded in 6 features:
 - # fresh food, milk, grocery, frozen, detergents/paper, delicatessen
- Each customer is labeled by: 6 labels in total
 - ** Channel (Channel 1 & 2) (Horeca 298, Retail 142)
 - * Region (Region 1, 2 & 3) (Lisbon 77, Oporto 47, Other 316)

Lisbon, Portugal

Oporto, Portugal

Visualization of the data

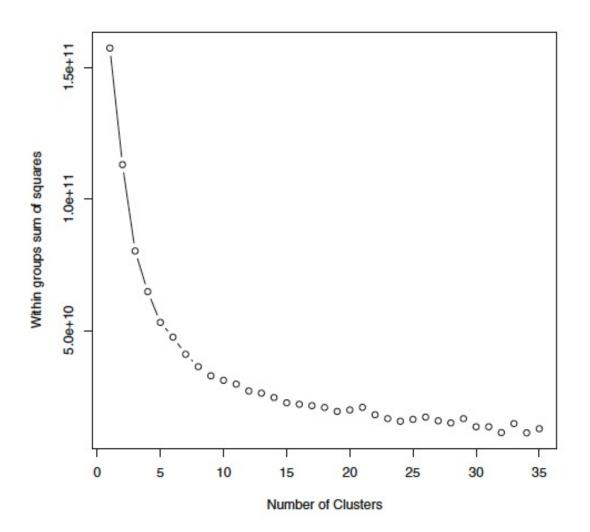
- Wisualize the data with scatter plots
- ** We do see that some features are correlated.
- ** But overall we do not see significant structure or groups in the data.



Scatter Plot Matrix

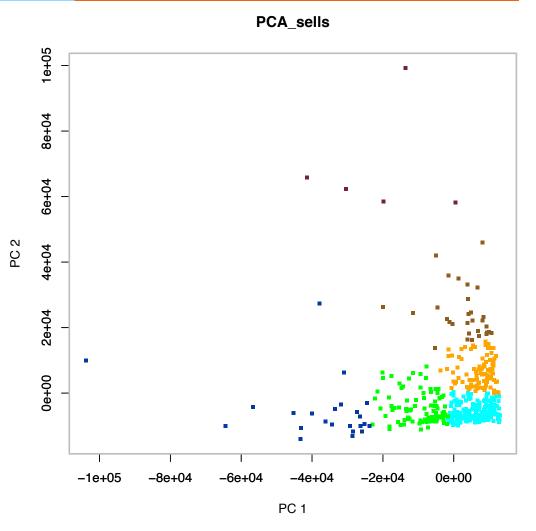
Do kmeans and choose k through the cost function

It's good to pick a **k** around the knee:
I choose 6 for it matches the number of labels



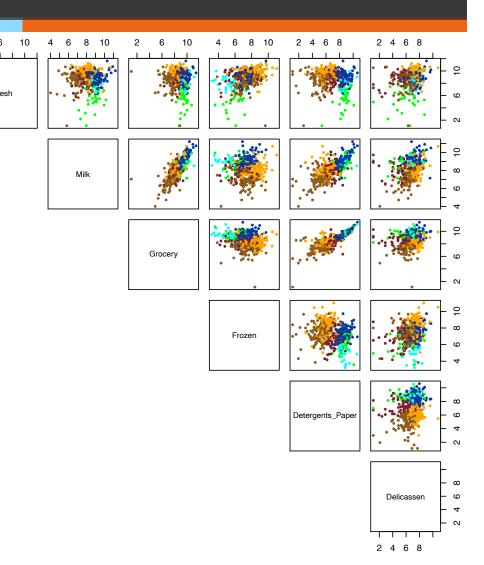
Visualization of the data (PCA)

- ** PCA does show some separation. Colors are the clusters
- Data points show large range of dynamics!



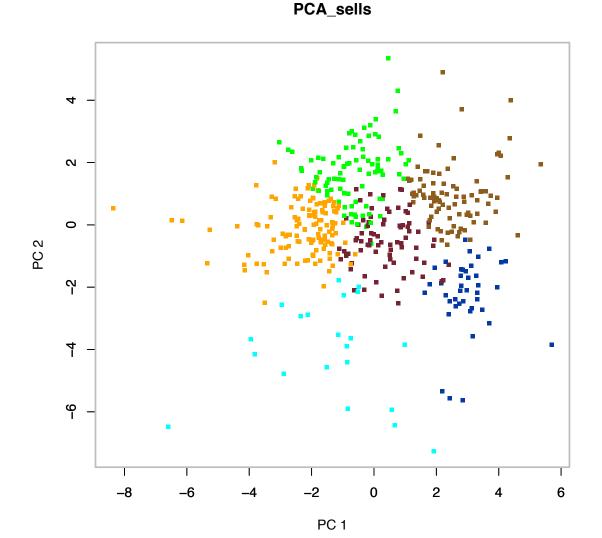
Do log transform of the data

- * Log transform the data
- Do scatter plot matrix after the log transform
- Do the kmeans and color the clusters identified by k-means



PCA after log transformation: Clusters

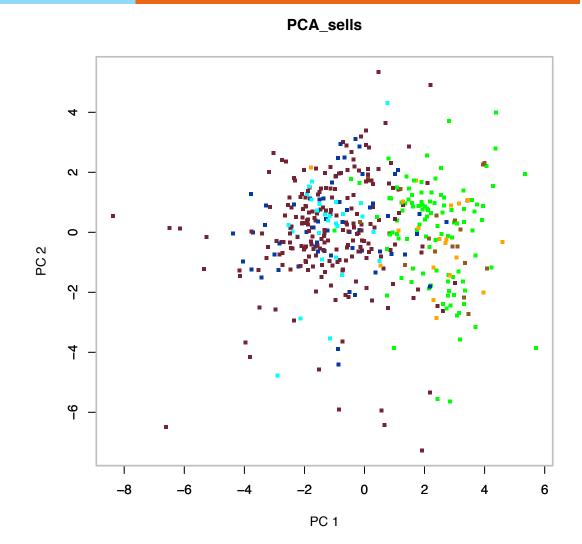
Colors show the clusters identified by k-means



PCA after log transformation

Colors show the Channel-region labels

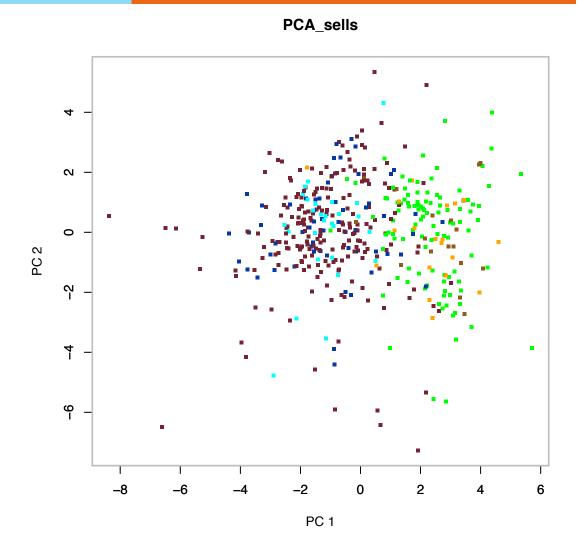
What does this tell us?



PCA after log transformation

Colors show the Channel-region labels

Channels differ a lot



Vector Quantization

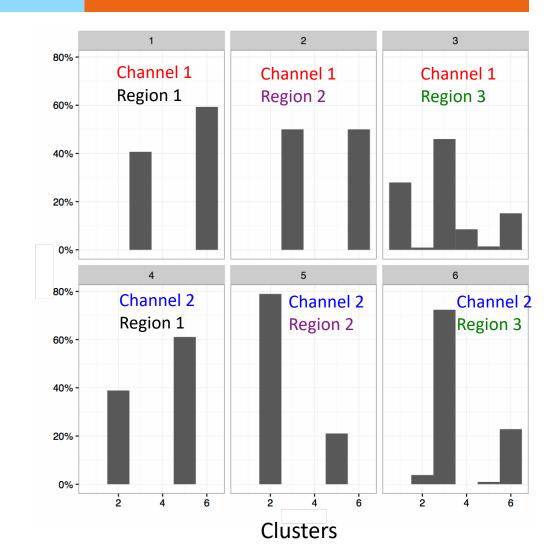
Cluster center histogram of the Portugal grocery spending data

For each channel/region, we make a histogram of customers that map to each of the 6 cluster centers.

* What do you see?

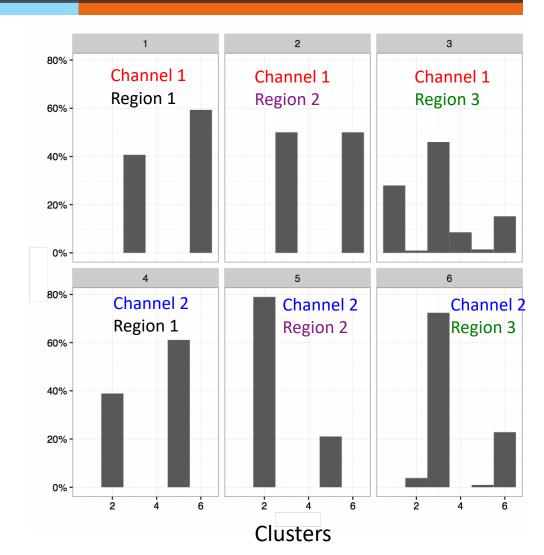
Channel1: Horeca Channel2: Retail

Region1: Lisbon Region2: Oporto Region3: Other



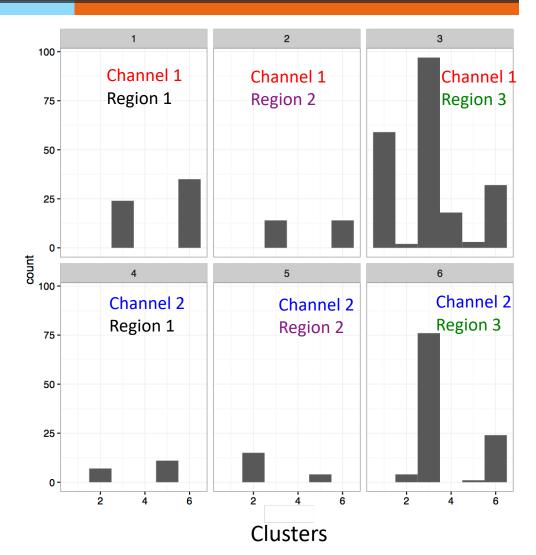
Cluster center histogram of the Portugal grocery spending data

- For each channel/region, we make a histogram of customers that map to each of the 6 cluster centers.
- ** Channels are significantly different!
- * Region 3 is special
- # Is it enough to plot the percentage?



Cluster center histogram of the Portugal grocery spending data

- For each channel/region, we make a histogram of customers that map to each of the 6 cluster centers.
- ** Channels are significantly different!
- * Region 3 is special
- Count matters depending on the purpose



Q. What can we do with cluster center histograms?

- A. investigate the feature patterns of data groups
- B. Classify new data with the cluster center histograms.
- C. Both A and B.

Vector Quantization for classifying data of varying size

- * The classifiers usually assume that each feature vector has the same number of entries.
- Many datasets in fact have items of different size
 - * Images usually have different numbers of pixels
 - ** Audio signals (and other time series) usually have different durations
- ** We will use vector quantization to map variable length data to fixed-length feature vectors using cluster center histogram.

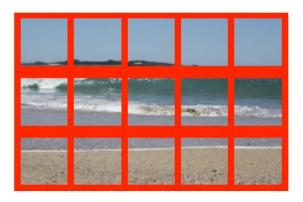
Pattern vocabulary: conceptual example

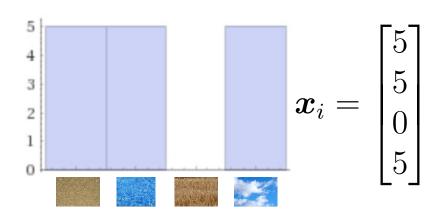
- Suppose we want to classify images into beach or prairie
- We can slice each images into 10 by 10 subsets (data entry of length 100)
- ** Then cluster the pieces, use the cluster center histograms to train and classify

Credit: Prof. David. Varodayan

Generate fixed-length feature vectors : conceptual example

- Slice the images into 10 by10 pixel subsets
- Do clustering on all the subsets from the training images
- Assign each subset to the nearest cluster centers (in k clusters/patterns)
- For each image, produce the counts with respect to each cluster center and form a feature vector of dimension k





Credit: Prof. David. Varodayan

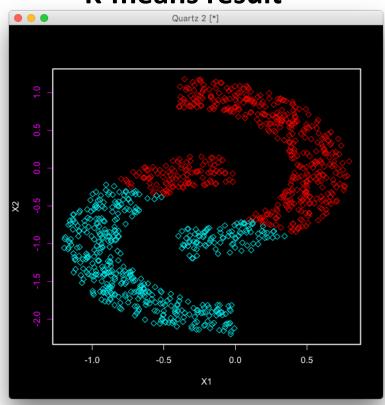
Spectral clustering

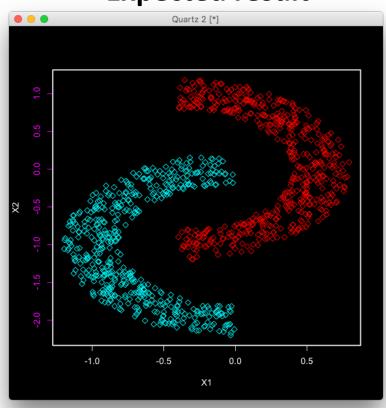
K-means is limited

* K-means fails in the **Two-moon** problem

K-means result

Expected result





Spectral Clustering

**** Theoretical basis**

- * The Graph Representation
- * The Adjacency Matrix
- ₩ Graph cut
- * The Laplacian Matrix
- * The properties of Laplacian that point to the solution

Again it's about Matrix!

Spectral Clustering

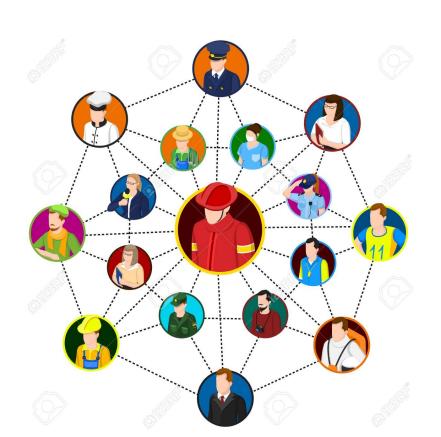
**** Theoretical basis**

****** The Graph Representation

Introduction of Graph

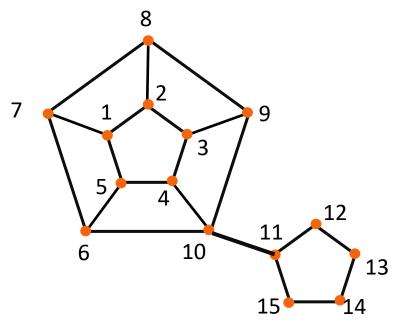
- ** Real world data often needs graph
- * Strength

A graph model of Social network data



Graph in terms of Mathematics

- # The graph is a set G(V, E)
- ****** V is the set of vertices



** E is the set of edges, showing the relationship between pair of vertices

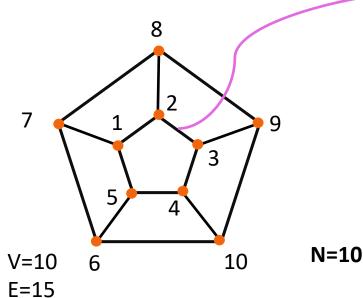
15 vertices, 21 edges

Spectral Clustering

- **** Theoretical basis**
 - * The Graph Representation
 - ****** The Adjacency Matrix

Graph data in the format of matrix

These 10 geometric data points can be represented with an *undirected* Graph and then numerically written as a matrix



Adjacency Matrix*: W $\{\omega_{ii}>=0\}$

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	1	0	1	0	0	0
2	1	0	1	0	0	0	0	1	0	0
3	0 >	1	0	1	0	0	0	0	1	0
4	0	0	1	0	1	0	0	0	0	1
5	1	0	0	1	0	1	0	0	0	0
6	0	0	0	0	1	0	1	0	0	1
7	1	0	0	0	0	1	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

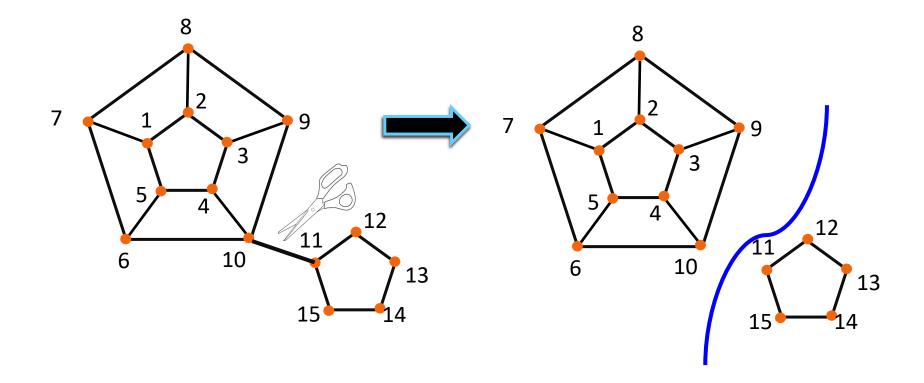
^{*} Some people prefer "Similarity matrix"

Spectral Clustering

- **** Theoretical basis**
 - * The Graph Representation
 - ** The Adjacency Matrix
 - **# Graph cut**

Spectral Clustering emerged from Graphcut

** Clusters are learned via min-Cut of the Graph



Spectral Clustering vs Graph-cut

** Spectral clustering is equivalent to the Graph-cut

Finding clusters is to solve an Eigenvalue problem using Graph's Laplacian matrix

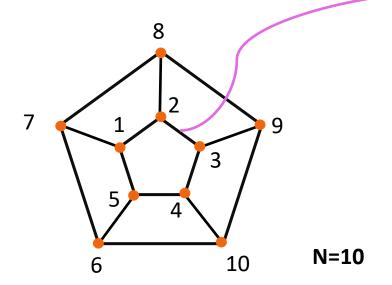
Spectral Clustering

**** Theoretical basis**

- * The Graph Representation
- * The Adjacency Matrix
- **# Graph cut**
- ****** The Laplacian Matrix

Graph data in the format of matrix

The weights ω_{ij} of the edges stored in the matrix of the graph can be **any non-negative values**



Adjacency Matrix: W $\{\omega_{ii}>=0\}$

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	1	0	1	0	0	0
2	1	0	1	0	0	0	0	1	0	0
3	0 >	1	0	1	0	0	0	0	1	0
4	0	0	1	0	1	0	0	0	0	1
5	1	0	0	1	0	1	0	0	0	0
6	0	0	0	0	1	0	1	0	0	1
7	1	0	0	0	0	1	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

Transform Adjacency Matrix W into Graph Laplacian Matrix L

$$\# L = D - W$$

$$\mathbf{D}_{ij} = \begin{bmatrix} \sum_{k} \omega_{ik}, & i=j \\ 0, & i\neq j \end{bmatrix}$$

Adjacency Matrix: $\mathbf{W} \{ \omega_{ij} \}$

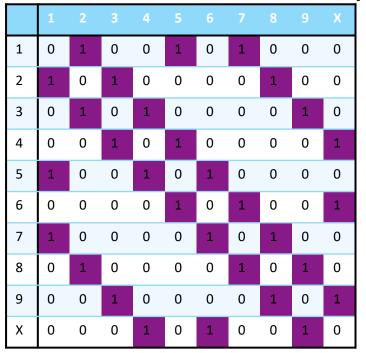
	1	2	3	4	5	6	7	8	9	Х
1	0	1	0	0	1	0	1	0	0	0
2	1	0	1	0	0	0	0	1	0	0
3	0	1	0	1	0	0	0	0	1	0
4	0	0	1	0	1	0	0	0	0	1
5	1	0	0	1	0	1	0	0	0	0
6	0	0	0	0	1	0	1	0	0	1
7	1	0	0	0	0	1	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
Χ	0	0	0	1	0	1	0	0	1	0

L	ap	ola	ıci	an	1	/la	tri	X:	L	{L	. _{ij} }
Г						_		_			

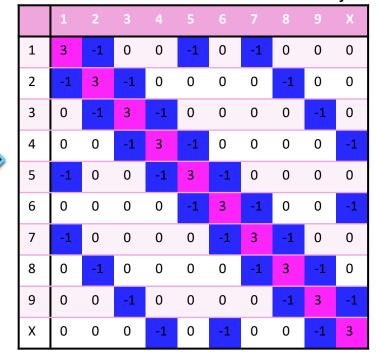
		1	2	3	4	5	6	7	8	9	Х
	1	3	-1	0	0	-1	0	-1	0	0	0
	2	-1	3	-1	0	0	0	0	-1	0	0
	3	0	-1	3	-1	0	0	0	0	-1	0
	4	0	0	-1	3	-1	0	0	0	0	-1
,	5	-1	0	0	-1	3	-1	0	0	0	0
	6	0	0	0	0	-1	3	-1	0	0	-1
	7	-1	0	0	0	0	-1	3	-1	0	0
	8	0	-1	0	0	0	0	-1	3	-1	0
	9	0	0	-1	0	0	0	0	-1	3	-1
	Х	0	0	0	-1	0	-1	0	0	-1	3

Q. What properties do you see in L matrix?

Adjacency Matrix: $\mathbf{W} \{ \omega_{ij} \}$



Laplacian Matrix: **L** {L_{ii}}



Spectral Clustering

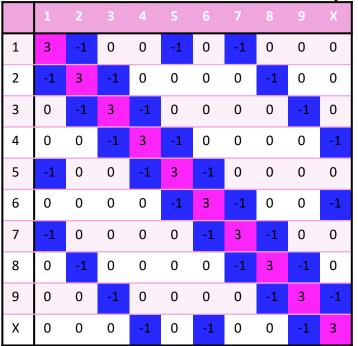
**** Theoretical basis**

- * The Graph Representation
- * The Adjacency Matrix
- ₩ Graph cut
- * The Laplacian Matrix
- ** The properties of Laplacian that point to the solution

Laplacian Matrix L's properties

$$\# L = D - W$$

Laplacian Matrix: **L** ({L_{ij}})



$$\mathbf{D}_{ij} = \begin{bmatrix} \sum_{k} \omega_{ik}, & i=j \\ 0, & i\neq j \end{bmatrix}$$

Properties (I—III)

- (I) Symmetric
- (II) Row Sums = 0
- (III) Quadratic form

$$f'Lf = \frac{1}{2} \sum_{ij} \omega_{ij} (f_i - f_j)^2 >= 0$$

f is any nonzero vector

Energy function

Laplacian Matrix L's properties (p4)

$$\# L = D - W$$

$$\# L x = \lambda x$$

$$\mathbf{D}_{ij} = \begin{bmatrix} \sum_{k} \omega_{ik}, i=j \\ 0, i\neq j \end{bmatrix}$$

Property (IV):

Positive semi-definite

All $\lambda_i >= 0$ and there is at least one eigenvalue $\lambda_0 = 0$ s.t. $u_0 = \{1, 1 ... 1\}$ constant vector

Laplacian Matrix L's properties (p5)

$$\# L = D - W$$

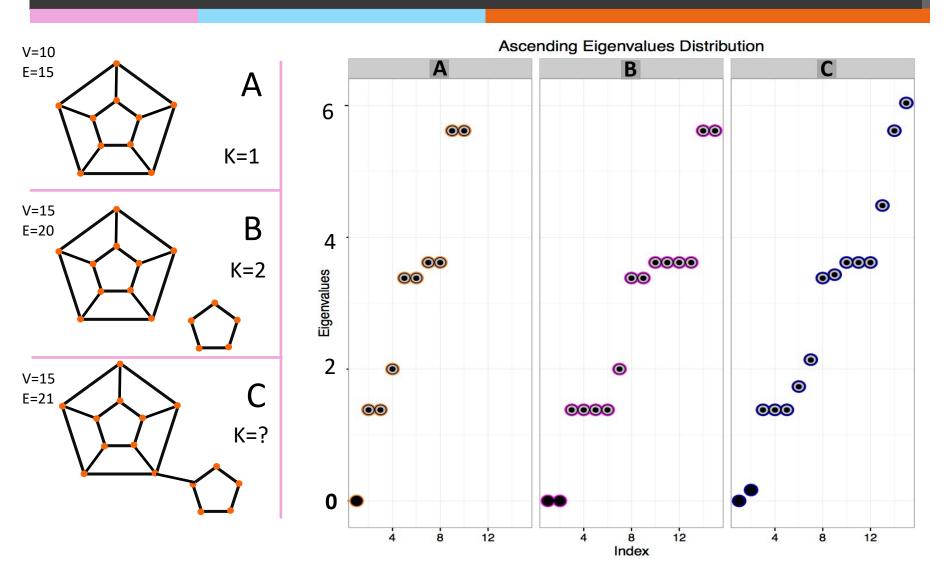
$$\# L x = \lambda x$$

$$\mathbf{D}_{ij} = \begin{bmatrix} \sum_{k} \omega_{ik}, i=j \\ 0, & i \neq j \end{bmatrix}$$

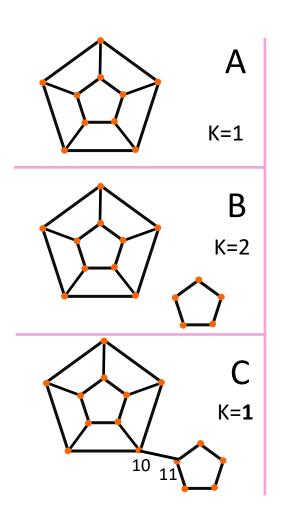
Property (V):

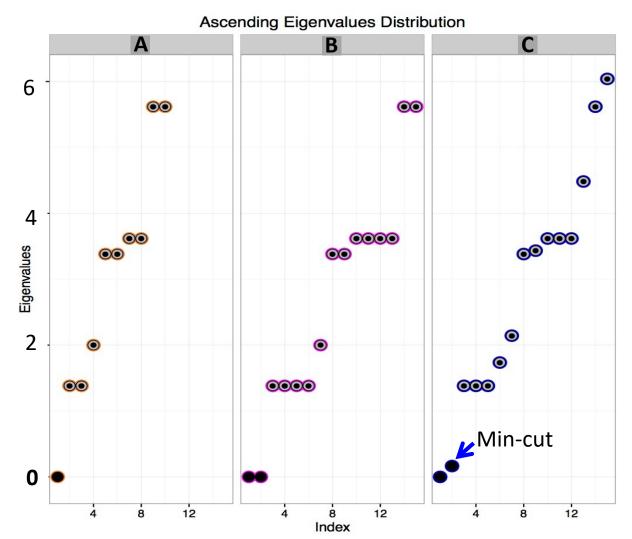
of zero valued λ_i is equal to the number of clusters (connected subgraph) in the graph

Eigenvalue distributions of three examples

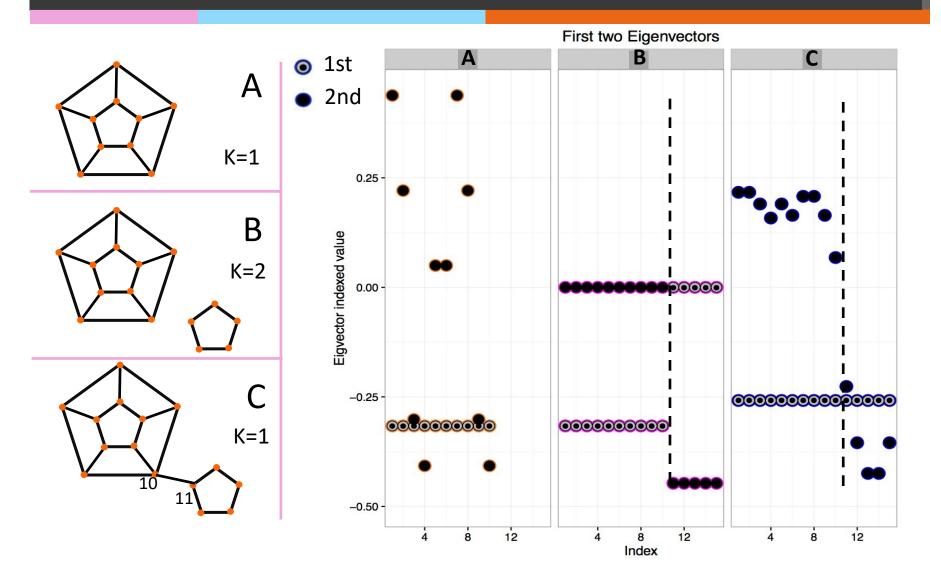


Eigenvalue distributions of three examples





First two Eigenvectors of three examples



Discussion

** Why does Spectral Clustering perform better than k-means for non-convex shaped data?

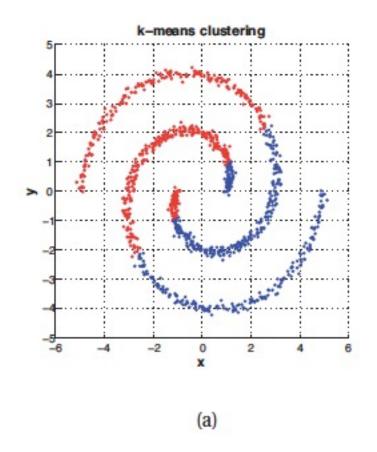
Discussion

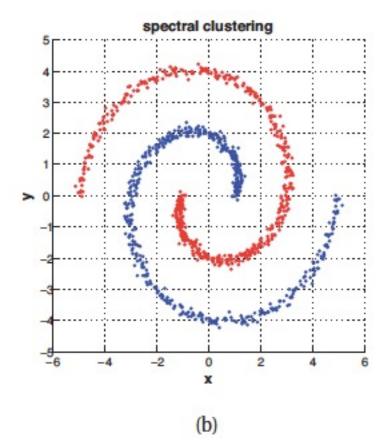
- ** Why does Spectral Clustering perform better than k-means for non-convex shaped data?
 - i) Graph representation kept the topological relationship btw data

Discussion

- ** Why does Spectral Clustering perform better than k-means for non-convex shaped data?
 - i) Graph representation kept the topological relationship btw data
 - ii) Eigenvectors are piecewise constant in the ideal cases, which are easy to cluster

Some Spectral clustering results



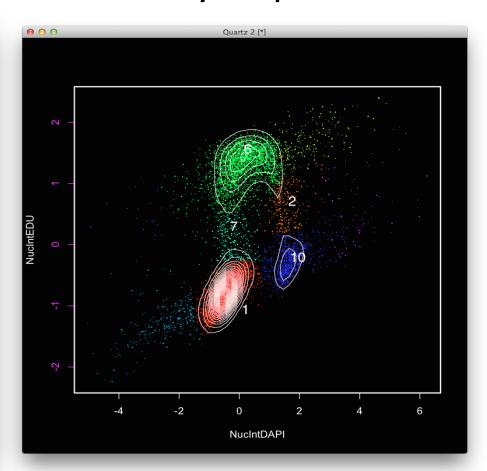


Some Spectral clustering results

Two-Moons

0.5 -1.0 X1

Cell Cycle phases



Conclusion of Spectral Clustering

Given # of zero valued λ_i = the number of disconnected components of the graph, we can approximately use the first k number of eigenvectors to cluster the data into k clusters.

The intuition: The singularities of the graph's Laplacian correspond to the # of clusters in the graph.

Assignments

- ****** Finish Chapter 12 of the textbook
- ****** Next time: Markov chain

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

