

"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Last time

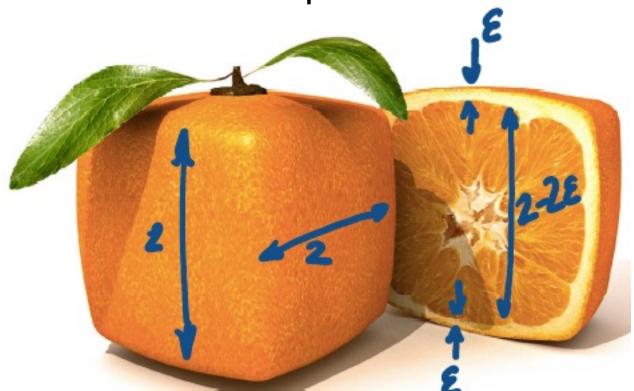
- **Linear Regression (II)
- ****Nearest Neighbor Regression**

Objectives

- ****The curse of dimensionality**
- **** Multivariate normal distribution**
- ****Unsupervised learning**
- **★Clustering (I)**

First let's take a look at a 3D object

Is there more fruit than peel?



Credit: Prof. David Varodayan

First take a look at a 3D object

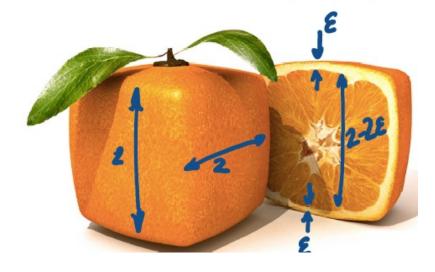
Is there more fruit or more peel?

Total Volume: 2³

Vol. of fruit: $(2-2\varepsilon)^3$

Vol. of peel: 2^3 - $(2-2\epsilon)^3$

Fraction of peel: $1-(1-\epsilon)^3$



If ε = 0.05 fraction of peel \approx 0.143

Credit: Prof. David Varodayan

What if we have a d-dimensional orange?

Is there always more fruit?

- A. YES
- B. NO

In arbitrary d-dimension

** Total amount of orange

** Amount of fruity part

** Fraction of orange that is peel

The curse of dimensions

If a dataset is uniformly distributed in a highdimensional cube (or other shape), majority of data is far from the origin.

** The above can be roughly proved by calculating the expected distance from the origin

The Expected distance from the origin in d-dimensional cube

$$E[\mathbf{x}^T \mathbf{x}] = E[\sum_{i=1}^d x_i^2] = \sum_{i=1}^d E[x_i^2]$$

$$= \sum_{i=1}^{d} \int_{cube} x_i^2 P(\boldsymbol{x}) d\boldsymbol{x}$$

Assuming the independence of each x_i

$$P(\boldsymbol{x}) = P(x_1)P(x_2)...P(x_d)$$

$$\int_{-\infty}^{+\infty} P(x_i) dx_i = 1$$

The general law of continuous probability density

$$\Rightarrow E[\boldsymbol{x}^T \boldsymbol{x}] = \sum_{i=1}^d \int_{-1}^1 x_i^2 P(x_i) dx_i$$

A lot of data is far from the origin.

** On average, data points are d/3 away from the origin (using square of distance)

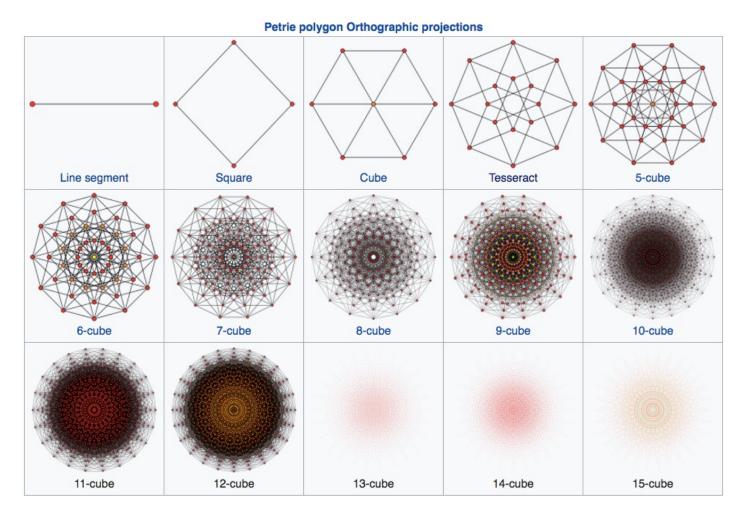
$$E[\mathbf{x}^{T}\mathbf{x}] = \sum_{i=1}^{d} \int_{-1}^{1} x_{i}^{2} P(x_{i}) dx_{i}$$

$$= \sum_{i=1}^{d} \frac{1}{2} \int_{-1}^{1} x_{i}^{2} dx_{i}$$

$$= \frac{d}{3}$$

What do high-dimensional cubes look like?

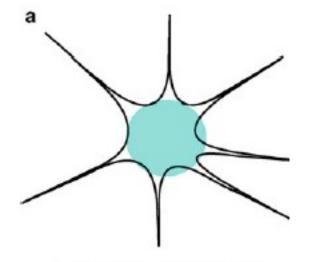
What do high-dimensional cubes look like?



Credit: Wiki

What does a convex object K in high dimensions look like?

The spikes are outliers in high dimension



Credit: G. Pfander editor, "Sampling theory, a Renaissance"

A general convex set

With this scaling, most of the volume of K is located around the Euclidean sphere of radius \sqrt{n} . Indeed, taking traces on both sides of the second equation in (1.2), we obtain

$$\mathbb{E} \|X\|_2^2 = n.$$

Therefore, by Markov's inequality, at least 90% of the volume of K is contained in a Euclidean ball of size $O(\sqrt{n})$. Much more powerful concentration results are known—the bulk of K lies very near the sphere of radius \sqrt{n} and the outliers have exponentially small volume. This is the content of the two major results in high-dimensional convex geometry, which we summarize in the following theorem.

Distance between points grows with increasing dimensions

$$E[d(\mathbf{u}, \mathbf{v})^2] = E[(\mathbf{u} - \mathbf{v})^T (\mathbf{u} - \mathbf{v})]$$

= $E[\mathbf{u}^T \mathbf{u}] + E[\mathbf{v}^T \mathbf{v}] - 2E[\mathbf{u}^T \mathbf{v}]$

High dimensional histogram of a data set is unhelpful

- * Most bins will be empty
- ** Some bins will have single data
- ** Very few will have more than one data point

Dealing with high dimensional data

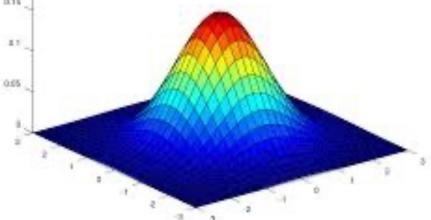
- ** Collect as much data as possible
- Cluster data into blobs/cluster
- * Fit each blob with simple probability model

Multivariate normal distribution

- Extension of the normal distribution to multiple dimensions
- ****** Bivariate normal distribution looks like this:

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}$$

$$-1 < \rho < 1$$



Multivariate normal probability densitiy

A multivariate normal random vector X of dimension d has this pdf:

$$P(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))$$

where

 $\mu = E[x]$ is d-dimensional mean vector

$$\Sigma = E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T] \text{ is the } d \times d \text{ positive}$$
 definite covariance matrix

Multivariate MLE

Given a d-dimensional data set ({x}) we can fit a
multivariate normal model using MLE

$$P(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))$$

$$\theta = \{ \boldsymbol{\mu}, \Sigma \}$$

Unsupervised learning

- ** Unsupervised learning means knowledge discovery from the feature vectors without labels.
- Weight and the work of the second with the second secon
 - ** Discovering latent factors
 - * Discovering clusters
 - * Discovering graph structure
 - * Matrix completion

Q. Is this true?

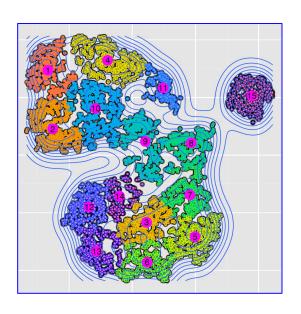
- ** Principal Component Analysis is an unsupervised learning method.
 - A. TRUE
 - B. FALSE

Dimension Reduction is unsupervised learning

- ** For example in **Principal Component Analysis**, no labels are assumed about the data.
- ** PCA discovers the latent factors--- the important eigenvectors of the covariance matrix

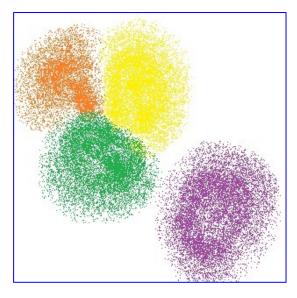
The family of unsupervised learning

Dimension reduction



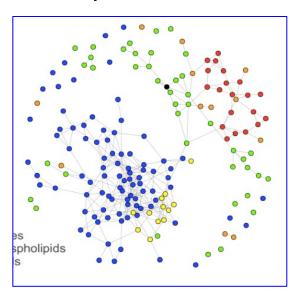
t-SNE

Clustering



K-means

Graph structure



Gaussian Graph model

• • • • • •

Clustering as an unsupervised learning method

- ** Clustering identifies specific structure called **clusters**.
- In clustering data is not labeled. By identifying clusters, the method assigns cluster membership labels to data.
- * A cluster is formed so that
 - * Items within a cluster are "close" to each other
 - * Items in different clusters are "far" from each other
 - Distance metric is important in clustering

Types of clustering method

- By input type:
 - ** Similarity based clustering: input is N x N similarity/distance matrix
 - **Feature based clustering:** input is N x D feature matrix
- By output type:
 - ***** Hierarchical clustering
 - ** Top-down (divisive)
 - # Bottom-up (agglomerative)
 - # Flat clustering:
 - * Mixture models, K-means clustering, Spectral clustering...

Hierarchical Clustering (I)

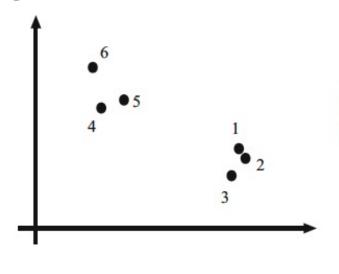
** Divisive clustering

- * Treat the whole dataset as a single cluster
- ** Then split the data set recursively until you get a satisfactory clustering

Hierarchical Clustering (II)

- ** Agglomerative clustering
 - * Treat each data item as its own cluster
 - * Then merge clusters until you get a satisfactory clustering

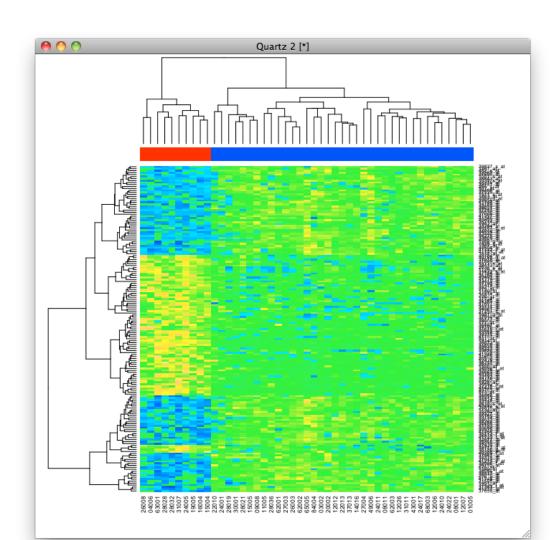
* A "dendrogram" is created





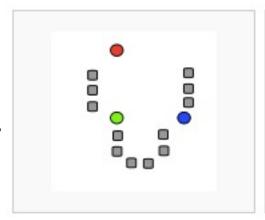
Hierarchical Clustering example

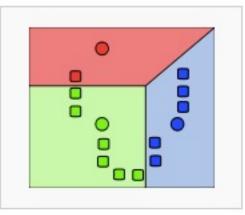
- ** Agglomerative clustering of matrix of gene-tissue pairs of human samples.
- Columns are tissues; rows are genes
- Clustering is done for both directions



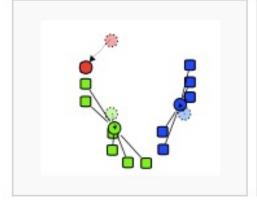
K-means clustering

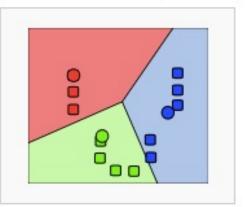
- Pick a value k as the number of clusters
- Select k random cluster centers
- # Iterate until convergence:
 - * Assign each data to the nearest center
 - Within the cluster





(1)





(2)

(3) Source:wikipedia (4)

Q. What are the values of c1 and c2?

Given a dataset {0,2,4,6,24,26}, initialize the k - means clustering algorithm with 2 cluster centers c1= 3 and c2 = 4. What are the values of c1 and c2 after **one** iteration of k-means?

Q. What are the values of c1 and c2?

Given a dataset {0,2,4,6,24,26}, initialize the k means clustering algorithm with 2 cluster centers c1= 3 and c2 = 4. What are the values of c1 and c2 after **two** iterations of k-means?

What does k-means do mathematically?

It's an minimization of a cost function

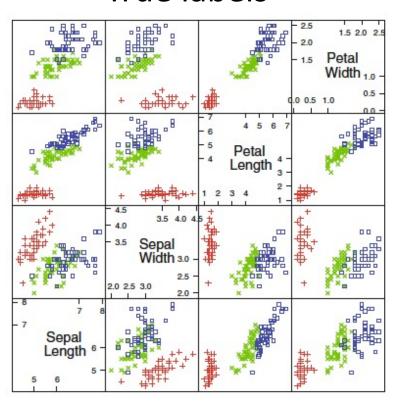
$$oldsymbol{\phi}(\delta, oldsymbol{c}) = \sum_{i,j} \delta_{i,j} [(oldsymbol{x}_i - oldsymbol{c}_j)^T (oldsymbol{x}_i - oldsymbol{c}_j)]$$

$$\mathbf{x} = \sum_{i=1}^{N} \sum_{j=1}^{k} \delta_{i,j} \| \mathbf{x}_i - \mathbf{c}_j \|^2 \quad \delta_{i,j} = \begin{cases} 1 & if \ \mathbf{x}_i \in cluster \ j \\ 0 & otherwise \end{cases}$$

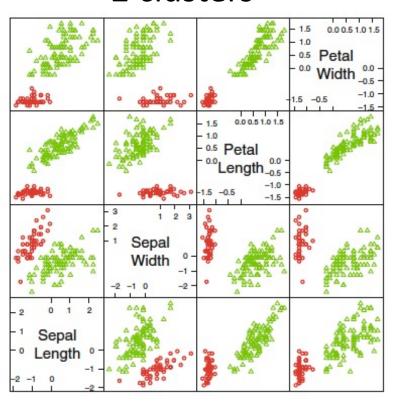
Cost is defined by the sum of squared distances of each data point from its cluster center

K-means clustering example: Iris

True labels

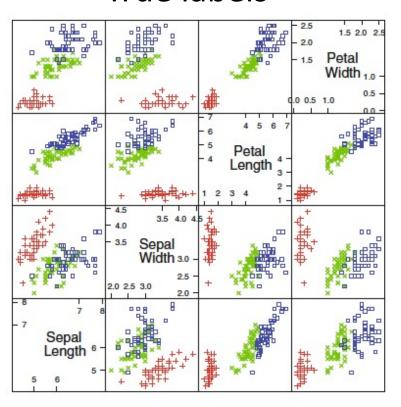


2 clusters

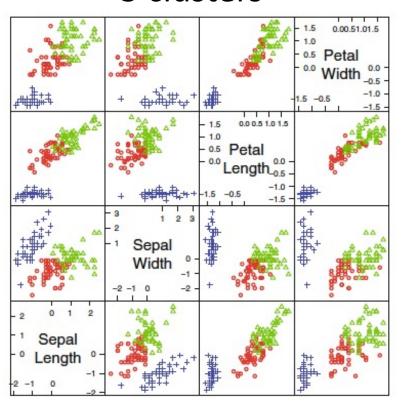


K-means clustering example: Iris

True labels

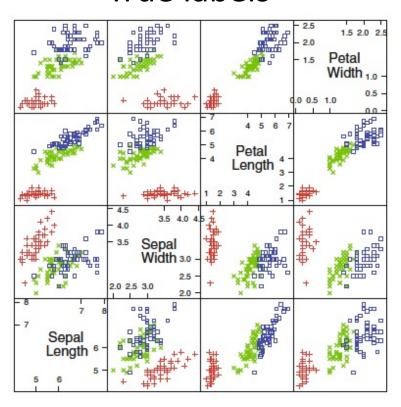


3 clusters

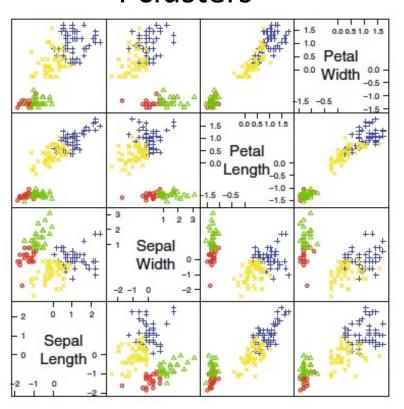


K-means clustering example: Iris

True labels



4 clusters



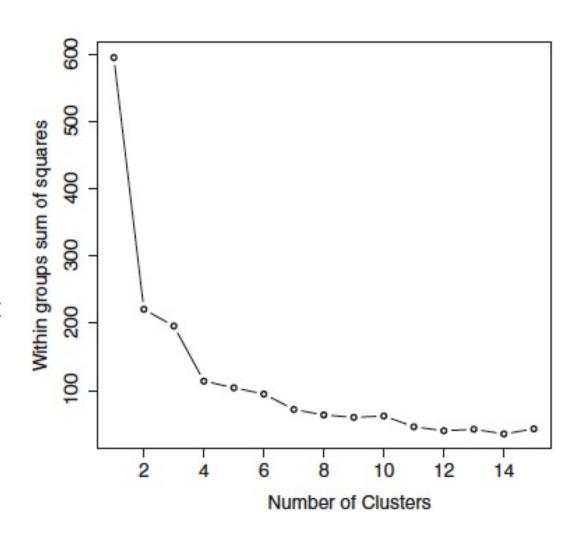
How to choose the value of k?

- * Sometimes we have the knowledge from the data set.
- Sometimes we have some other natural way to choose k.
- Otherwise given the cost function, we may perform clustering for many k values and choose k from the knee of the cost function empirically.

Choose k from the cost function curve

Which is best?
Still depends on the application

Usually we want fewer clusters.



Some variants of k-means clustering

- Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster
- # Hierarchical k-means speeds up clustering for very large datasets
- K-medioids allows clustering of data that cannot be averaged

Q. What is different between a hierarchical clustering (hc) and k-means?

- A. HC produces dendrogram while k-means results in only flat clusters.
- B. HC doesn't need to choose number of clusters while k-means needs that step.
- C. HC has higher order time complexity than k-means
- D. All the above.

K-means clustering example: Portugal consumers

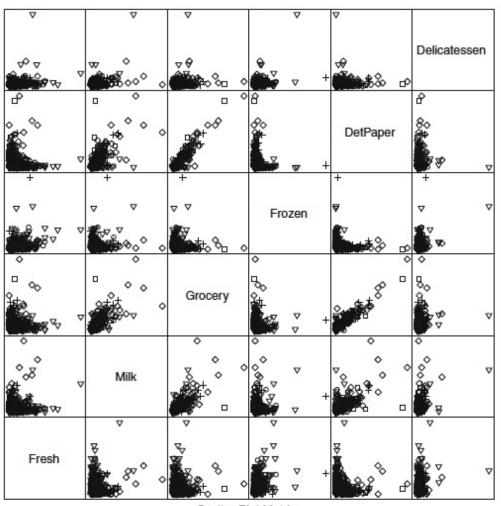
- * The dataset consists of the annual grocery spending of 440 customers
- ****** Each customer's spending is recorded in 6 features:
 - # fresh food, milk, grocery, frozen, detergents/paper, delicatessen
- Each customer is labeled by: 6 labels in total
 - ** Channel (Channel 1 & 2) (Horeca 298, Retail 142)
 - ** Region (Region 1, 2 & 3) (Lisbon 77, Oporto 47, Other 316)

Lisbon, Portugal

Oporto, Portugal

Visualization of the data

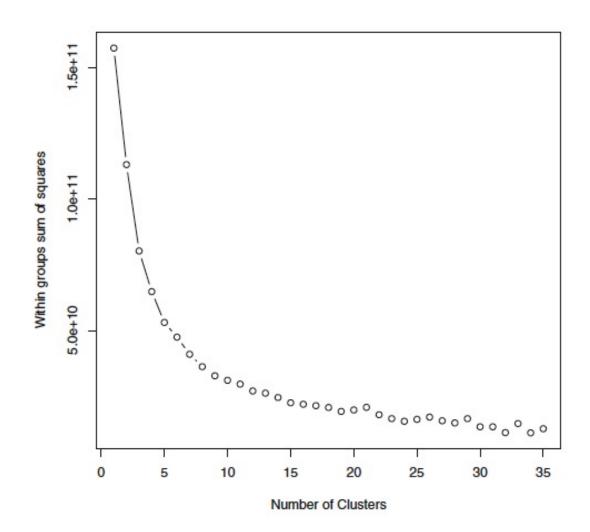
- Wisualize the data with scatter plots
- ** We do see that some features are correlated.
- ** But overall we do not see significant structure or groups in the data.



Scatter Plot Matrix

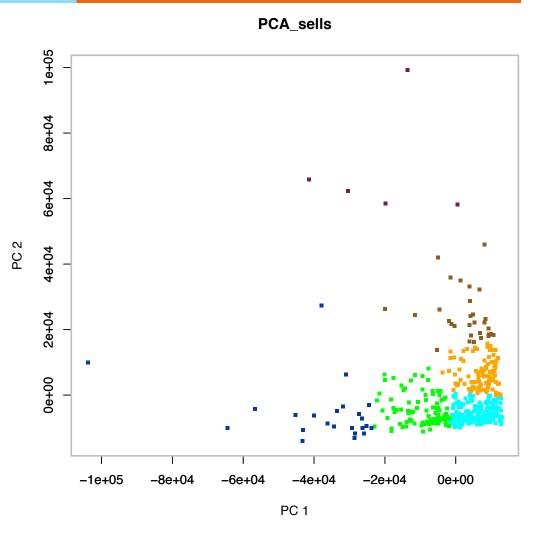
Do kmeans and choose k through the cost function

It's good to pick a **k** around the knee:
I choose 6 for it matches the number of labels



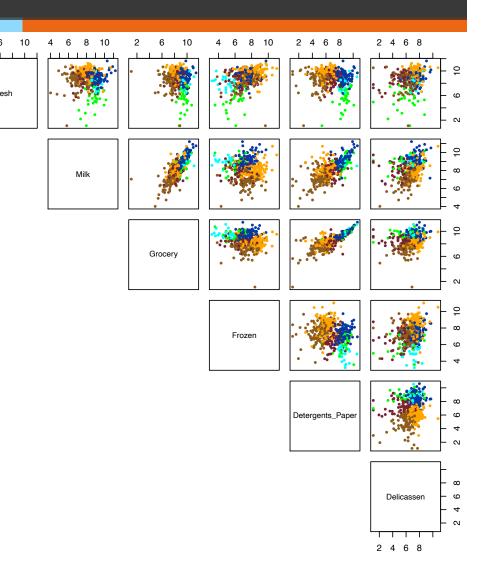
Visualization of the data (PCA)

- ** PCA does show some separation. Colors are the clusters
- Data points show large range of dynamics!



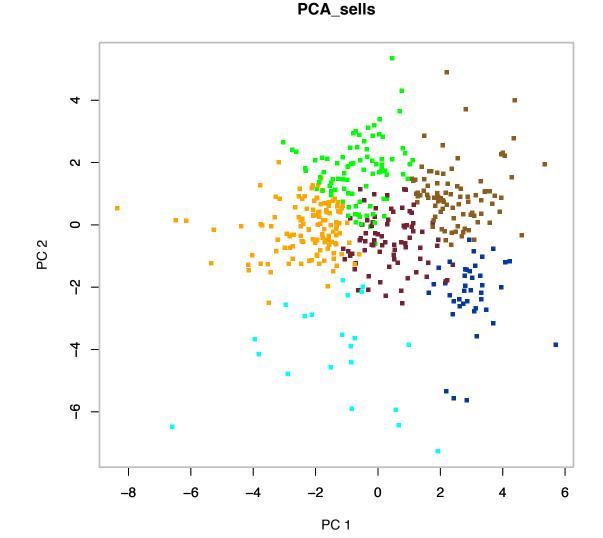
Do log transform of the data

- * Log transform the data
- Do scatter plot matrix after the log transform
- Do the kmeans and color the clusters identified by k-means



PCA after log transformation: Clusters

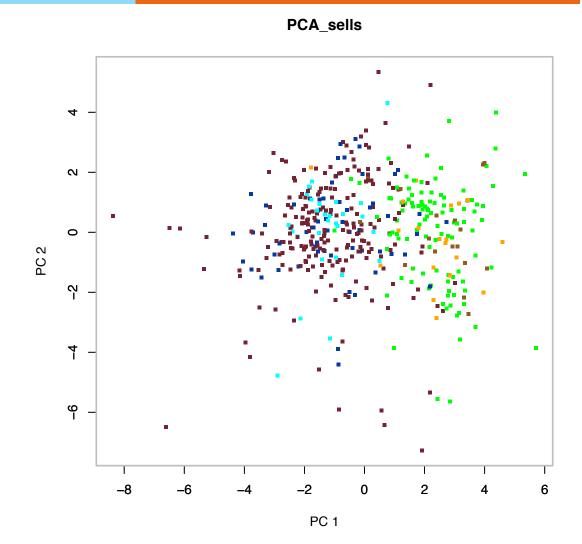
Colors show the clusters identified by k-means



PCA after log transformation

Colors show the Channel-region labels

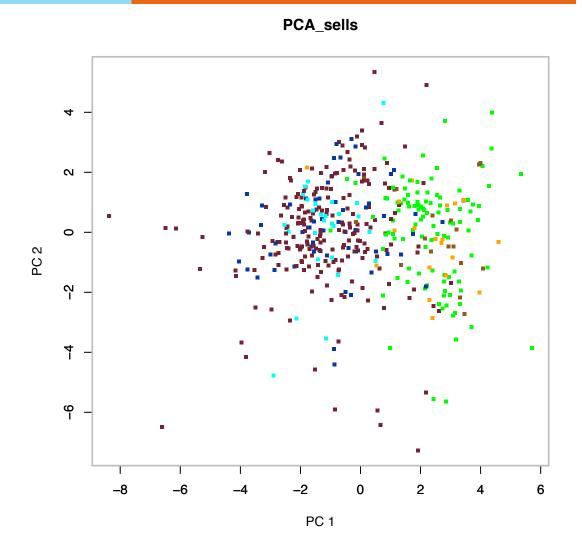
What does this tell us?



PCA after log transformation

Colors show the Channel-region labels

Channels differ a lot



Assignments

- Read Chapter 11 of the textbook
- Week 14 Module
- Happy Thanksgiving!
- Next time: Clustering (II) & intro. Of Markov Chain

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

