

"...many problems are naturally classification problems"---Prof. Forsyth

Credit: wikipedia

Last time

- # Decision tree (II)
- ****** Random forest

a x + b = 0

5:9n(a/2)+6)

** Support Vector Machine (I)

Objectives

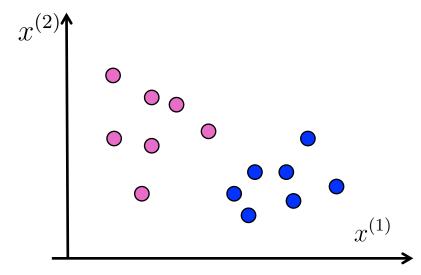
- **** Support Vector Machine (II)**
 - * Hinge loss + Regularization
 - * Convex function, Gradient Descent Stochastic Gradient Descent
 - * Training & Validation
- ** Naïve Bayesian Classifier

Motivation for Studying Support Vector Machine

- When solving a classification problem, it is good to try several techniques.
- Criteria to consider in choosing the classifier include
 - ***** Accuracy
 - * Training speed
 - ** Classification speed
 - * Performance with small training set
 - ** Interpretability

SVM problem formulation

- * At first we assume a binary classification problem
- ** The training set consists of N items
 - Feature vectors x_i of dimension d
 - ** Corresponding class labels $y_i \in \{\pm 1\}$
- We can picture the training data as a d-dimensional scatter plot with colored labels



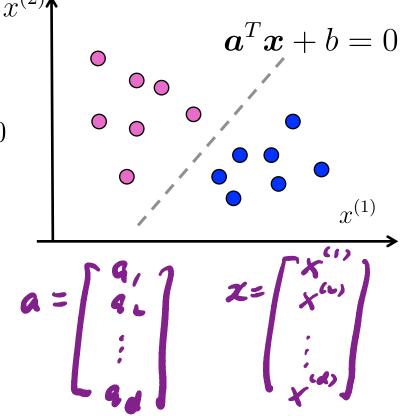
Decision boundary of SVM

- SVM uses a hyperplane as its decision boundary
- * The decision boundary is:

$$a_1 x^{(1)} + a_2 x^{(2)} + \dots + a_d x^{(d)} + b = 0$$

In vector notation, the hyperplane can be written as:

$$\boldsymbol{a}^T \boldsymbol{x} + b = 0$$



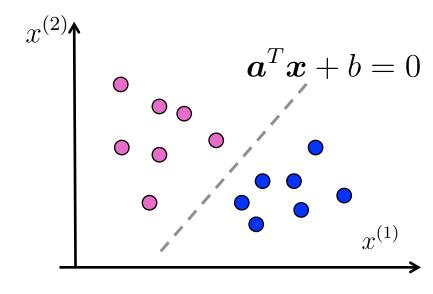
Classification function of SVM

SVM assigns a class label to a feature vector according to the following rule:

+1 if
$$\boldsymbol{a}^T \boldsymbol{x}_i + b \ge 0$$

-1 if $\boldsymbol{a}^T \boldsymbol{x}_i + b < 0$

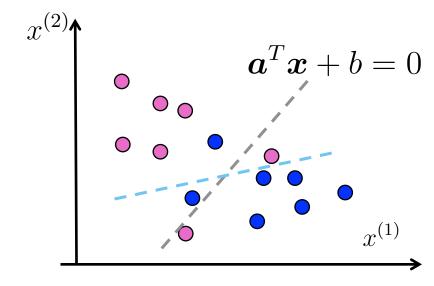
** In other words, the classification function is: $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b)$



- * Note that
 - ** If $|m{a}^Tm{x}_i+b|$ is small, then $m{x}_i$ was close to the decision boundary
 - ** If $|m{a}^Tm{x}_i+b|$ is large, then $m{x}_i$ was far from the decision boundary

What if there is no clean cut boundary?

- Some boundaries are better than others for the training data
- Some boundaries are likely more robust for run-time data
- We need to a quantitative measure to decide about the boundary
- * The loss function can help decide if one boundary is better than others



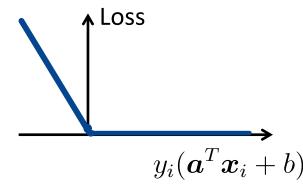
Loss function 1

- ** For any given feature vector \boldsymbol{x}_i with class label $y_i \in \{\pm 1\}$, we want
 - ** Zero loss if $m{x}_i$ is classified correctly $sign(m{a}^Tm{x}_i+b)=y_i$
 - ** Positive loss if \boldsymbol{x}_i is misclassified $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b) \neq y_i$
 - ** If x_i is misclassified, more loss is assigned if it's further away from the boundary
- * This loss function 1 meets the criteria above:

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

* Training error cost

$$S(\boldsymbol{a}, b) = \frac{1}{N} \sum_{i=1}^{N} max(0, -y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$



Q. What's the value of this function?

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$
 if $sign(\boldsymbol{a}^T\boldsymbol{x}_i + b) = y_i$

Q. What's the value of this function?

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$
 if $sign(\boldsymbol{a}^T\boldsymbol{x}_i + b) \neq y_i$

A. 0.

B. A value greater than or equal to 0.

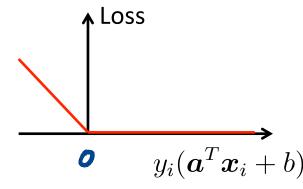
Loss function 1

- ** For any given feature vector \boldsymbol{x}_i with class label $y_i \in \{\pm 1\}$, we want
 - * Zero loss if $m{x}_i$ is classified correctly $sign(m{a}^Tm{x}_i+b)=y_i$
 - ** Positive loss if \boldsymbol{x}_i is misclassified $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b) \neq y_i$
 - ** If $oldsymbol{x}_i$ is misclassified, more loss is assigned if it's further away from the boundary
- * This loss function 1 meets the criteria above:

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

* Training error cost

$$S(\boldsymbol{a}, b) = \frac{1}{N} \sum_{i=1}^{N} max(0, -y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$



The problem with loss function 1

- ** Loss function1 does not distinguish between the following decision boundaries if they both classify $oldsymbol{x}_i$ correctly.
 - One passes the two classes closely
 - One that passes with a wider margin

But leaving a larger margin gives robustness for run-time data- the large margin principle

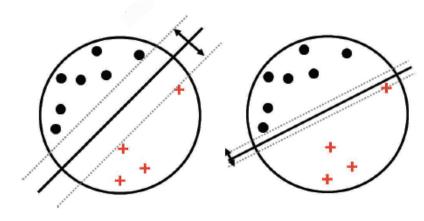


Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin. Right: a separating hyper-plane with small margin.

Credit: Kelvin Murphy

Loss function 2: the hinge loss

- ** We want to impose a small positive loss if $oldsymbol{x}_i$ is correctly classified but close to the boundary
- * The **hinge loss** function meets the criteria above:

$$max(0, 1 - y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

* Training error cost

$$S(\boldsymbol{a},b) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$
 Loss

The problem with loss function 2

- ** Loss function 2 favors decision boundaries that have large $\|a\|$ because increasing $\|a\|$ can zero out the loss for a correctly classified x_i near the boundary.
- But large $\|a\|$ makes the classification function $sign(a^Tx_i + b)$ extremely sensitive to small changes in x_i and make it less robust to run-time data.
- ** So small $\|a\|$ is better.

Hinge loss with regularization penalty

** We add a penalty on the square magnitude $\|oldsymbol{a}\|^2 = oldsymbol{a}^Toldsymbol{a}$

***** Training error cost

$$S(\boldsymbol{a}, b) = \left[\frac{1}{N} \sum_{i=1}^{N} max(0, 1 - y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))\right] + \lambda(\frac{\boldsymbol{a}^T \boldsymbol{a}}{2})$$

** The **regularization parameter** λ trade off between these two objectives

Q. What does the penalty discourage?

$$S(\boldsymbol{a}, b) = \left[\frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))\right] + \lambda(\frac{\boldsymbol{a}^T \boldsymbol{a}}{2})$$

- A. Too big a magnitude of the vector **a**
 - B. Too many data points in the training set

How to compute the decision boundary?

minimize Loss function
$$S(\vec{a}, b)$$

 $(\vec{a}, b^*) = argmin(S(\vec{a}, b))$

$$\begin{cases} a_i^* \\ a_{2}^* \\ \vdots \\ a_{d}^* \\ b^* \end{cases}$$

Convex set and convex function

If a set is convex, any line connecting two points in the set is completely included in the set

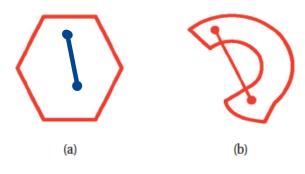
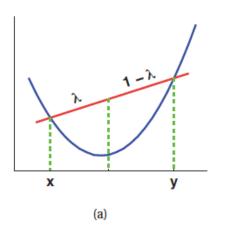
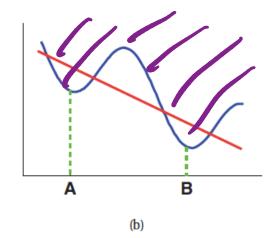


Figure 7.4 (a) Illustration of a convex set. (b) Illustration of a nonconvex set.

* A convex function: the area above the curve is convex

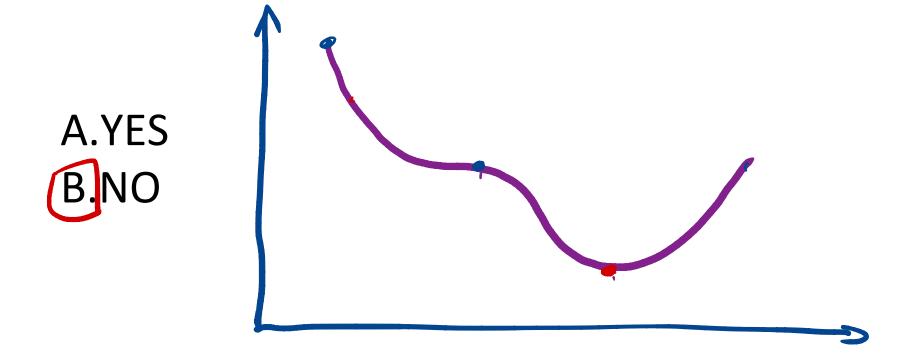
$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$





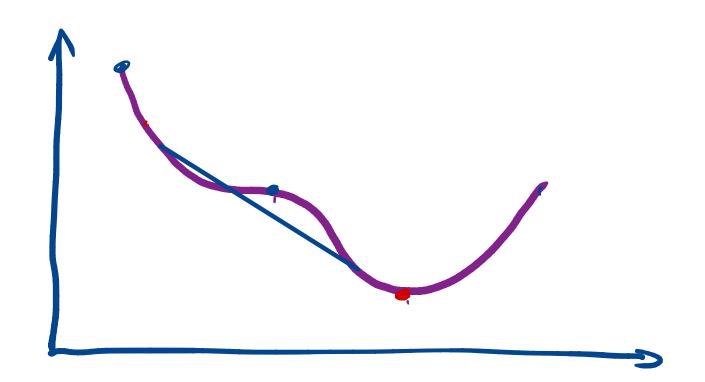
Credit: Dr. Kelvin Murphy

Q. Is this curve a convex curve?



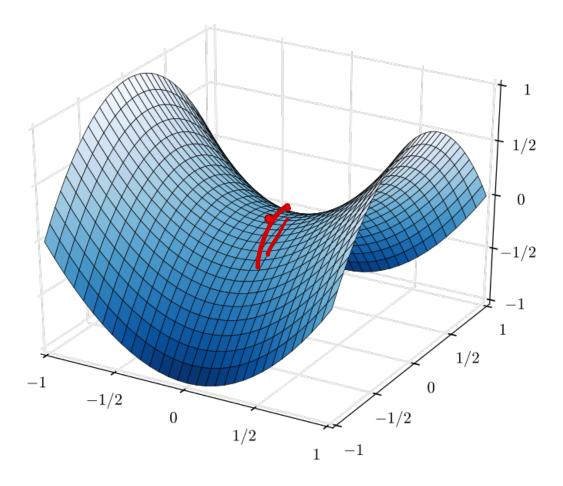
Q. Is this curve a convex curve?

A.YES B.NO



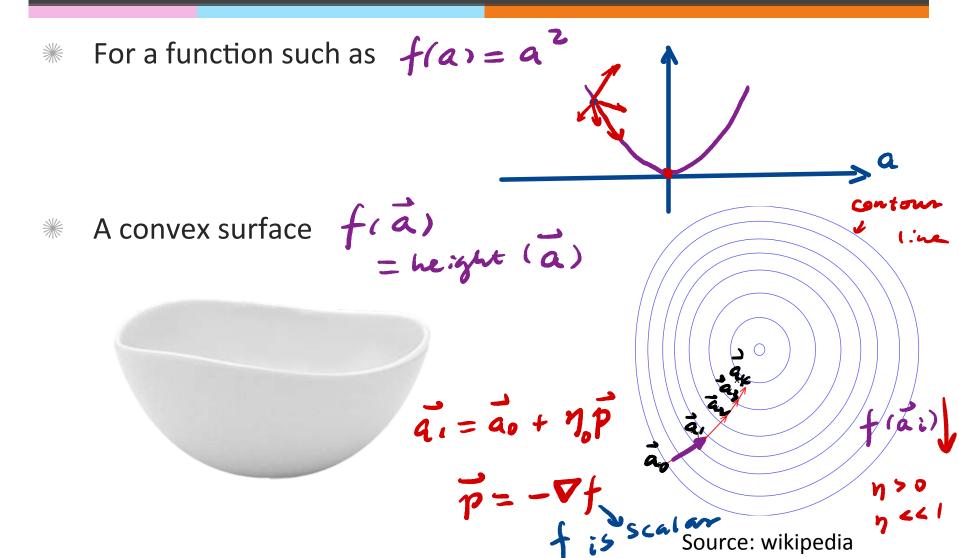
Q. Is this surface convex?

A.YES B.NO



Source: wikipedia

Iterative minimization by gradient descent



Gradient Descent

$$\vec{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_d \end{bmatrix}^T & let's omit b for now \\ Loss function: f = f(\vec{a}) & \vec{a} & -\vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a} \\ \vec{a} & \vec{a$$

$$f(x) = f(x_0) + f'(x_0) \times + - \cdot \cdot \frac{f'(x_0)}{h!}$$

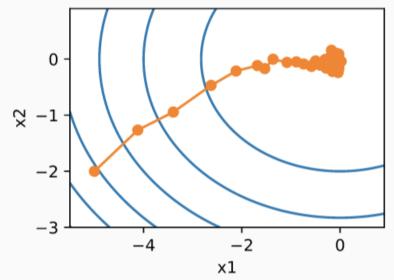
Stochastic gradient descent

if
$$f(\vec{a}) = \frac{1}{K} \sum_{j=1}^{K} Q(\vec{a}, j)$$
 in training set Stochastic gradient descent m

approximates $f(\vec{a}) = g(\vec{a}) = \frac{1}{M} \sum_{i=1}^{K} Q(\vec{a}, i)$

is RV. uniform in (i, K)

We often choose m =1



The difference btw GD and SGD

oss:

$$f(\vec{a}) = \frac{1}{K} \sum_{j=1}^{K} Q(a,j)$$

$$j=1 \text{ tpenalty}$$

$$Q = \max(0, 1-\frac{1}{2}; (a^{T}x_{j}+b))$$

$$\vec{a}_{n+1} = \vec{a}_{n} - 1 \nabla f(\vec{a}_{n})$$

$$\lim_{n \to \infty} \vec{a}_{n} = \underset{\vec{a}}{\operatorname{argmin}} (f(\vec{a}_{n}))$$

$$\lim_{n \to \infty} \vec{a}_{n} = \underset{\vec{a}}{\operatorname{argmin}} (f(\vec{a}_{n}))$$

$$if \quad f(\vec{a}_{n}) = \underset{\vec{a}}{\operatorname{argmin}} (f(\vec{a}_{n}))$$

SGD Loss: $g(\vec{a}) = \frac{1}{m} \sum_{i=1}^{m} Q(\vec{a}, i)$ g(a) = f(a) + 2noise ant = an - 7 \q g(an) 1:in $E[(a_n-a^*)^2]=0$ notations

lim $E[(a_n-a^*)^2]=0$ siven convex Loss

and other conditions

Update parameters of the hyperplane during the stochastic gradient descent

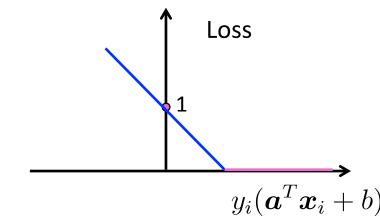
Since $S_k(\boldsymbol{a},b) = max(0,1-y_k(\boldsymbol{a}^T\boldsymbol{x}_k+b))$ and $S_0(\boldsymbol{a},b) = \lambda(\frac{\boldsymbol{a}^T\boldsymbol{a}}{\Omega})$ We have the following updating equations:

$$S(a,b) = S_K + S_O$$
 if

If
$$y_k(\boldsymbol{a}^T\boldsymbol{x}_k + b) \ge 1$$
 If $y_k(\boldsymbol{a}^T\boldsymbol{x}_k + b) < 1$ $\boldsymbol{a} \leftarrow \boldsymbol{a} - \eta(\lambda \boldsymbol{a})$ $\boldsymbol{a} \leftarrow \boldsymbol{a} - \eta(\lambda \boldsymbol{a} - y_k)$ $b \leftarrow b$ $b \leftarrow b - \eta(-y_k)$

$$\begin{aligned} \mathbf{f} & y_k(\boldsymbol{a}^T\boldsymbol{x}_k + b) \geq 1 \\ \boldsymbol{a} \leftarrow \boldsymbol{a} - \eta(\lambda \boldsymbol{a}) \\ b \leftarrow b \end{aligned} & \begin{aligned} \mathbf{lf} & y_k(\boldsymbol{a}^T\boldsymbol{x}_k + b) < 1 \\ \boldsymbol{a} \leftarrow \boldsymbol{a} - \eta(\lambda \boldsymbol{a} - y_k \boldsymbol{x}_k) \\ b \leftarrow b - \eta(-y_k) \end{aligned}$$

We often set
$$\eta_n = \frac{1}{n}$$



Training procedure-minimizing the cost function

- * The training error cost $S(\boldsymbol{a},b)$ is a function of decision boundary parameters (\boldsymbol{a},b) , so it can help us find the best decision boundary.
- st Fix λ and set some initial values for $(oldsymbol{a},b)$
- ** Search iteratively for $(oldsymbol{a},b)$
- ** Repeat the previous steps for several values of λ and choose the one that gives the decision boundary with best accuracy on a validation data set.

Validation/testing of SVM model

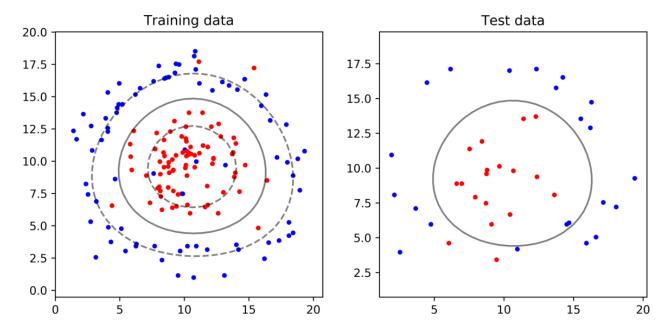
- Split the labeled data into training, validation and test sets.
- ** For each choice of λ , run stochastic gradient descent to find the best decision boundary parameters (a, b) using the training set.
- ** Choose the best λ based on accuracy on the validation set.
- * Finally evaluate the SVM's accuracy on the **test** set.
- * This process avoids overfitting the data.

Extension to multiclass classification

- # All vs. all
 - * Train a separate binary classifier for each pair of classes.
 - ** To classify, run all classifiers and see which class it will be labeled most with.
 - ** Computational complexity is quadratic to the number of classes.
- One vs. all
 - Train a separate binary classifier for each class against all else.
 - ** To classify, run all classifiers and see which label gets the highest score
 - ** Computational complexity scales linearly.

What if the data is inseparable linearly?

- ** There is a chance the data is inseparable
- ****** Use the non-linear **SVM with kernels!**
- ** Decision boundary is curved



Naïve Bayes classifier

- **Training**
 - Use the training data $\{(\mathbf{x}_i | \mathbf{y})\}$ to estimate a probability model P(y|x)
 - Assume that the features of $\{x\}$ are conditionally independent given the class label y

$$P(oldsymbol{x}|y) = \prod_{j=1}^d P(oldsymbol{x}^{(j)}|y)$$
 sification

- Classification
 - Assign the label $argmax \ P(y|x)$ to a feature P(XID) P(YID) P(ZID) =P(XID) P(YID) P(ZID) vector x

Naïve Bayes Model

st MAP estimator of class variable y given the data $oldsymbol{x}$

$$\underset{y}{argmax} \ P(y|\boldsymbol{x})$$

Naïve Bayes Model

** MAP estimator of class variable y given the data x

$$\underset{y}{argmax} \ \frac{P(y|\boldsymbol{x})}{P(\boldsymbol{x}|y)P(y)}$$

$$= \underset{y}{argmax} \ \frac{P(\boldsymbol{x}|y)P(y)}{P(\boldsymbol{x})}$$

Naïve Bayes Model

st MAP estimator of class variable y given the data $oldsymbol{x}$

$$argmax P(y|\mathbf{x})$$

$$= argmax \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= argmax P(\mathbf{x}|y)P(y)$$

$$y$$

Because P(x) doesn't depend on y

Naïve Bayes Model

st MAP estimator of class variable y given the data $oldsymbol{x}$

$$argmax \ P(y|\boldsymbol{x})$$

$$= argmax \ \frac{P(\boldsymbol{x}|y)P(y)}{P(\boldsymbol{x})}$$

$$= argmax \ P(\boldsymbol{x}|y)P(y)$$

$$= argmax \ P(\boldsymbol{x}|y)P(y)$$

$$y$$

$$= argmax \ \left[\prod_{j=1}^{d} P(\boldsymbol{x}^{(j)}|y)\right] P(y)$$

$$y$$

$$= argmax \ \left[\prod_{j=1}^{d} P(\boldsymbol{x}^{(j)}|y)\right] P(y)$$

Naïve Bayes Model

st MAP estimator of class variable y given the data $oldsymbol{x}$

$$argmax \ P(y|\boldsymbol{x})$$

$$= argmax \ \frac{P(\boldsymbol{x}|y)P(y)}{P(\boldsymbol{x})} \qquad \text{"Na\"ive" assumption of conditional independence of features}$$

$$= argmax \ \left[\prod_{j=1}^d P(\boldsymbol{x}^{(j)}|y)\right]P(y)$$

$$= argmax \ \left[\sum_{j=1}^d log P(\boldsymbol{x}^{(j)}|y) + log \ P(y)\right]$$

Modeling the prior and the likelihoods

- Model the prior based on the frequency of y in the training set
 - For a binary classifier, this model is a Bernoulli random variable
- ** Model each likelihood $P(oldsymbol{x}^{(j)}|y)$ by:
 - Selecting an appropriate family of distributions
 - * Normal for real-valued numerical data
 - Poisson for counts in fixed intervals
 - **# Etc.**
 - Fitting the parameters of the distribution using MLE

An example of Naive Bayes training

Training data

X ⁽¹⁾		X ⁽²⁾		у
	3.5	10		1
	1.0	8		1
	0.0	10		-1
	-3.0	14		-1

Datatrame format for illustration

Modeling $P(x^{(1)}|y)$ as normal

$$P(\boldsymbol{x}^{(1)}|y=1)$$
 $\mu_{MLE} = \frac{3.5 + 1.0}{2} = 2.25$
 $\sigma_{MLE} = 1.25$

$$P(\boldsymbol{x}^{(1)}|y=-1)$$

$$\mu_{MLE} = -1.5$$

$$\sigma_{MLE} = 1.5$$

Modeling $P(x^{(2)}|y)$ as Poisson

$$P(\mathbf{x}^{(2)}|y=1)$$

 $\lambda_{MLE} = \frac{10+8}{2} = 9$

$$P(\boldsymbol{x}^{(2)}|y=-1)$$

$$\lambda_{MLE} = 12$$

Modeling P(y) as Bernoulli

$$P(y = 1) = \frac{2}{4} = 0.5$$
$$P(y = -1) = 0.5$$

Classification example:

For a new feature vector x = [x1,x2,...], ie x = [3,9] in the example $\int_{-1}^{1} d$

$$\underset{y}{argmax} \left[\sum_{j=1}^{d} log P(\boldsymbol{x}^{(j)}|y) + log P(y) \right]$$

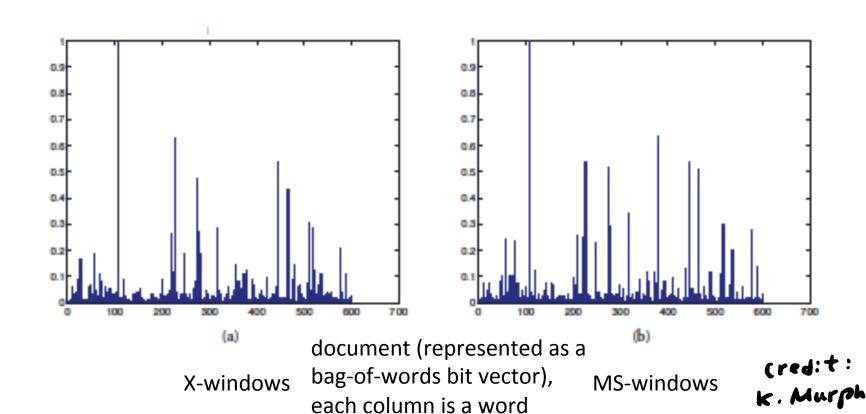
Classification example:

$$\underset{y}{argmax} \left[\sum_{j=1}^{d} log P(\boldsymbol{x}^{(j)}|y) + log P(y) \right]$$

$$g(y) = \begin{cases} \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot25^{2}}}}{\sqrt{2\times 1\cdot25^{2}}} + \log \frac{e^{-\frac{9}{9}\frac{9}{1}}}{9!} + \log \frac{1}{2} & \text{if } y=1 \\ \log \frac{e^{-\frac{(3-(-1\cdot5))^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{e^{-\frac{12}{9}\frac{9}{1}}}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{e^{-\frac{12}{9}\frac{9}{1}}}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{e^{-\frac{12}{9}\frac{9}{1}}}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{e^{-\frac{12}{9}\frac{9}{1}}}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{e^{-\frac{12}{9}\frac{9}{1}}}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{e^{-\frac{(3-2\cdot5)^{2}}{2\times 1\cdot5^{2}}}}{\sqrt{2\times 1\cdot5^{2}}} + \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1}{2} & \text{if } y=-1 \\ \log \frac{1}{9!} + \log \frac{1} + \log \frac{1}{9!} + \log \frac{1}{9!} + \log \frac{1}{9!} + \log \frac{1}{9!} + \log \frac{1}{9$$

Example of Naïve Bayesian Model

"Bag of words" Naive Bayesian models for document class



What about the decision boundary?

- Not explicit as in the case of decision tree
- ** This method is parametric, generative
 - ** The model was specified with parameters to generate label for test data

Pros and Cons of Naïve Bayesian Classifier

Pros:

- Simple approach
- **☀** Good accuracy
- Good for high dimensional data

***** Cons:

- * The assumption of conditional independence of features
- * No explicit decision boundary
- Sometimes has numerical issues

Assignments

- ****** Finish Chapter 11 of the textbook
- ** Next time: Linear regression

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

