

"...many problems are naturally classification problems"---Prof. Forsyth

Credit: wikipedia

#### Last time

- \*\* Demo of Principal Component Analysis
- **\***Introduction to classification

# Objectives

- \*\*Decision tree (II)
- **\*\*Random forest**
- **\*\*Support Vector Machine (I)**

#### Classifiers

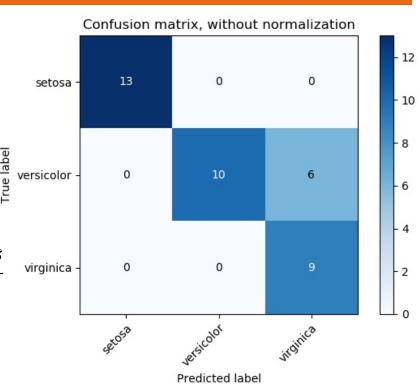
- \* Why do we need classifiers?
- What do we use to quantify the performance of a classifier?
- What is the baseline accuracy of a 5-class classifier using 0-1 loss function?
- \* What's validation and cross-validation in classification?

#### Performance of a multiclass classifier

- \* Assuming there are c classes:
- \* The class confusion matrix is c × c
- \*\* Under the 0-1 loss function accuracy=  $\dfrac{sum\ of\ diagonal\ terms}{sum\ of\ all\ terms}$

ie. in the right example, accuracy = 32/38=84%





Source: scikit-learn

#### Cross-validation

- If we don't want to "waste" labeled data on validation, we can use cross-validation to see if our training method is sound.
- Split the labeled data into training and validation sets in multiple ways
- # For each split (called a fold)
  - \*\* Train a classifier on the training set
  - Evaluate its accuracy on the validation set
- \*\* Average the accuracy to evaluate the training methodology

#### Q1. Cross-validation

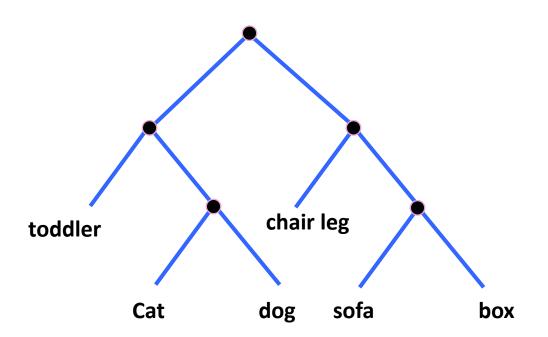
**Cross-validation** is a method used to prevent overfitting in classification.

A. TRUE

B. FALSE

## Decision tree: object classification

\*\* The object classification decision tree can classify objects into multiple classes using sequence of simple tests. It will naturally grow into a tree.

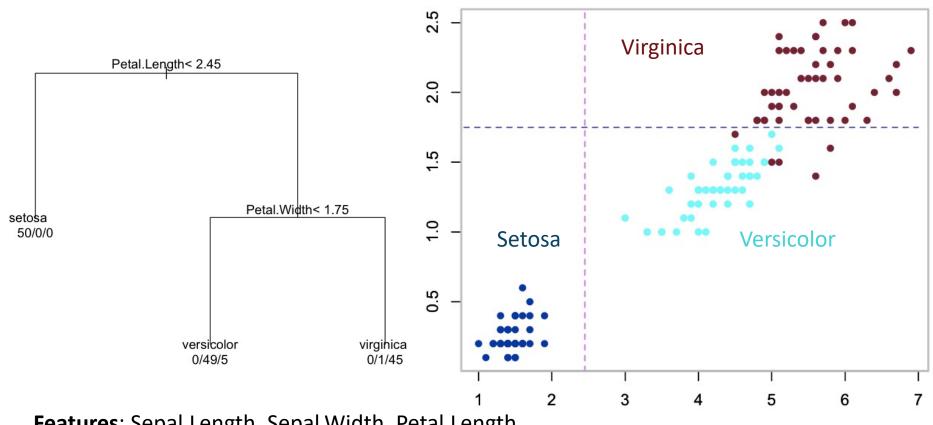


## Training a decision tree: example

\* The "Iris" data set

Iris

Petal.Length



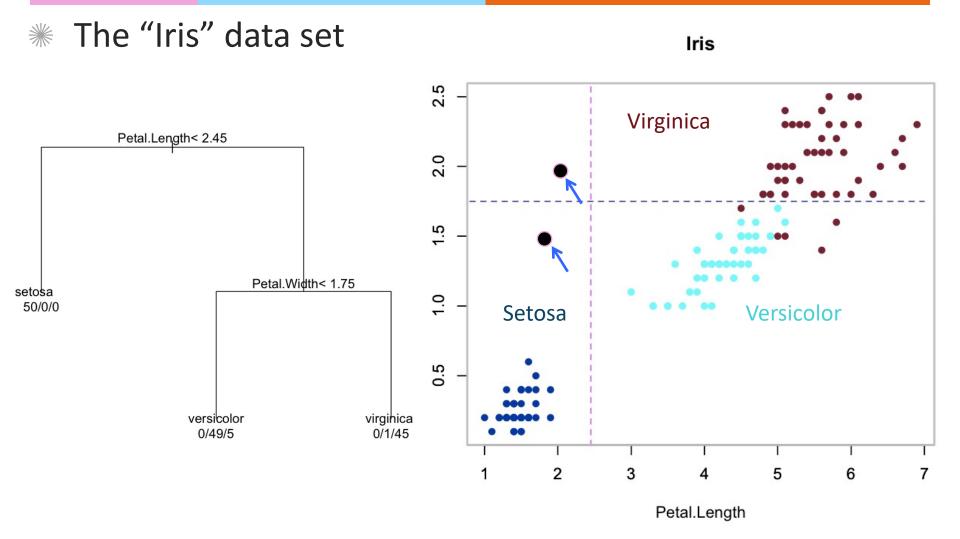
Features: Sepal.Length, Sepal.Width, Petal.Length,

Petal.Width Label: Species

## Training a decision tree

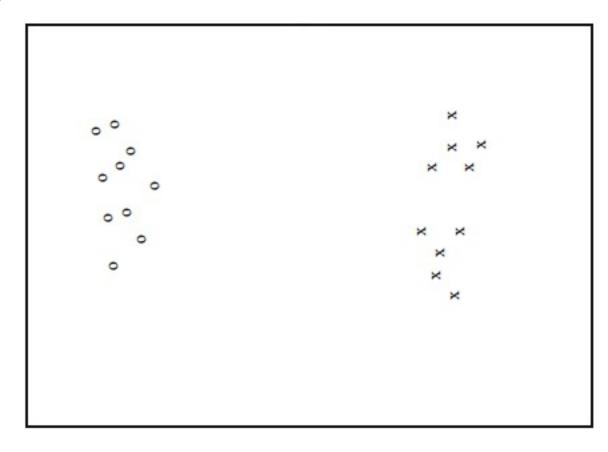
- \* Choose a dimension/feature and a split
- Split the training Data into left- and right- child subsets D<sub>I</sub> and D<sub>r</sub>
- Repeat the two steps above recursively on each child
- \* Stop the recursion based on some conditions
- \* Label the leaves with class labels

### Classifying with a decision tree: example



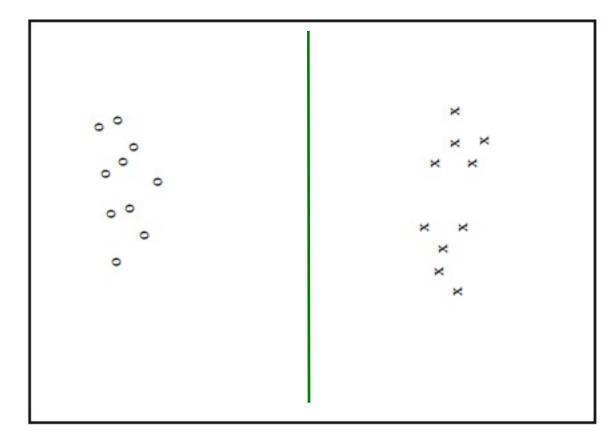
# Choosing a split

An informative split makes the subsets more concentrated and reduces uncertainty about class labels



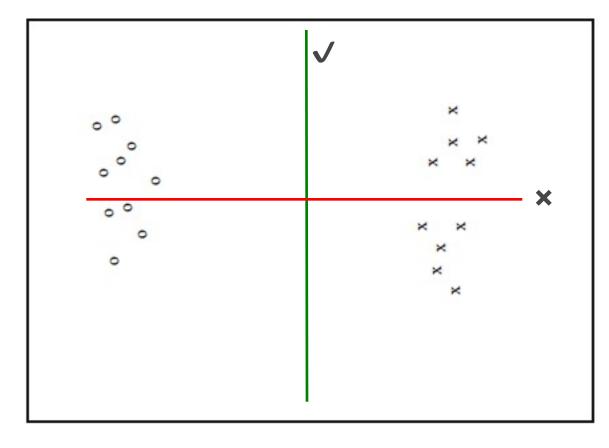
# Choosing a split

\*\* An informative split makes the subsets more concentrated and reduces uncertainty about class labels

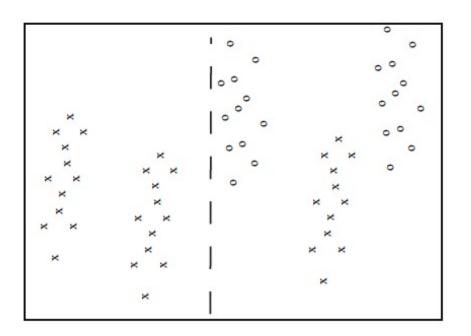


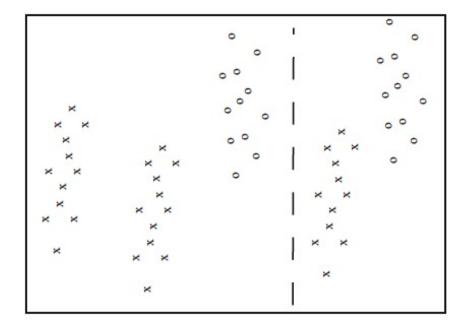
# Choosing a split

An informative split makes the subsets more concentrated and reduces uncertainty about class labels



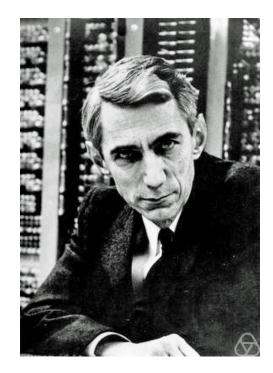
### Which is more informative?





#### Quantifying uncertainty using entropy

- We can measure uncertainty as the number of bits of information needed to distinguish between classes in a dataset (first introduced by Claude Shannon)
  - We need Log<sub>2</sub> 2 =1 bit to distinguish2 equal classes
  - \*\* We need Log<sub>2</sub> 4 = 2 bit to distinguish 4 equal classes

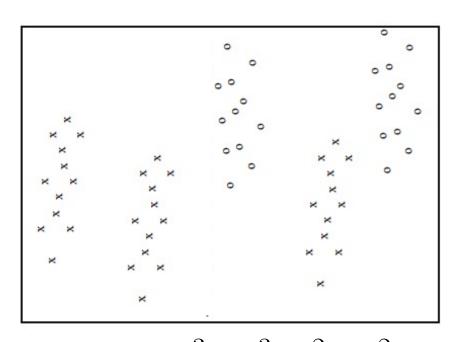


#### Quantifying uncertainty using entropy

- Entropy (Shannon entropy) is the measure of uncertainty for a general distribution
  - # If class i contains a fraction P(i) of the data, we need  $log_2$   $\frac{1}{P(i)}$  bits for that class
  - \* The entropy H(D) of a dataset is defined as the weighted mean of entropy for every class:

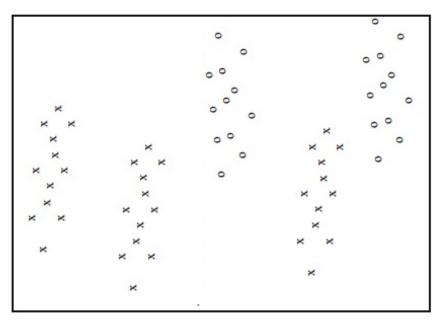
$$H(D) = \sum_{i=1}^{c} P(i)log_2 \frac{1}{P(i)}$$

# Entropy: before the split

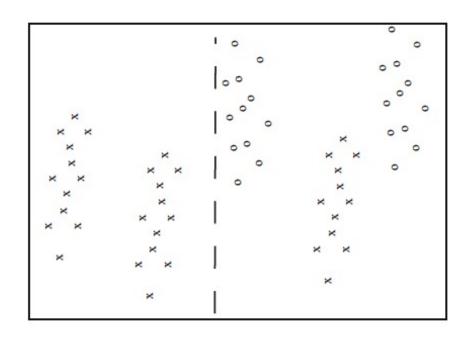


$$H(D) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5}$$
$$= 0.971 \ bits$$

# Entropy: examples

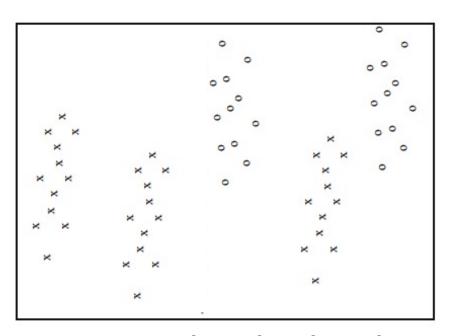


$$H(D) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5}$$
$$= 0.971 \ bits$$

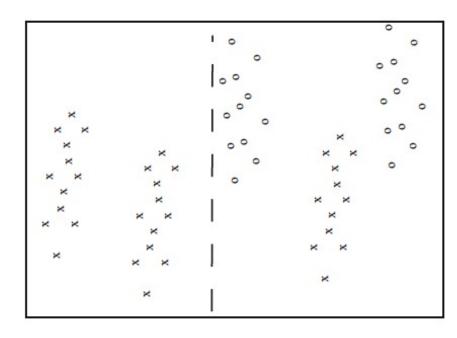


$$H(D_l) = -1 \log_2 1 = 0 bits$$

# Entropy: examples



$$H(D) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5}$$
$$= 0.971 \ bits$$



$$H(D_l) = -1 \log_2 1 = 0 \text{ bits}$$

$$H(D_r) = -\frac{1}{3}\log_2 \frac{1}{3} - \frac{2}{3}\log_2 \frac{2}{3}$$

$$= 0.918 \text{ bits}$$

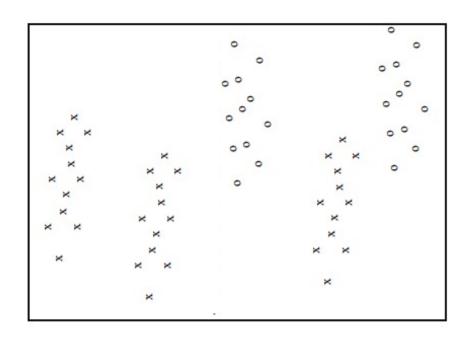
# Information gain of a split

\* The information gain of a split is the amount of entropy that was reduced on average after the split

$$I = H(D) - (\frac{N_{Dl}}{N_D}H(D_l) + \frac{N_{Dr}}{N_D}H(D_r))$$

- \* where
  - $** N_D$  is the number of items in the dataset D
  - \*\*  $N_{Dl}$  is the number of items in the left-child dataset  $D_l$
  - $**N_{Dr}$  is the number of items in the left-child dataset  $D_r$

# Information gain: examples



$$I = H(D) - \left(\frac{N_{Dl}}{N_D}H(D_l) + \frac{N_{Dr}}{N_D}H(D_r)\right)$$

$$= 0.971 - \left(\frac{24}{60} \times 0 + \frac{36}{60} \times 0.918\right)$$

$$= 0.420 \ bits$$

# Q. Is the splitting method global optimum?

A. Yes

B. No

#### How to choose a dimension and split

- \*\* If there are **d** dimensions, choose approximately  $\sqrt{d}$  of them as candidates at random
- For each candidate, find the split that maximizes the information gain
- \* Choose the best overall dimension and split
- Mote that splitting can be generalized to categorical features for which there is no natural ordering of the data

#### When to stop growing the decision tree?

- Growing the tree too deep can lead to overfitting to the training data
- Stop recursion on a data subset if any of the following occurs:
  - **\*** All items in the data subset are in the same class
  - \*\* The data subset becomes smaller than a predetermined size
  - \* A predetermined maximum tree depth has been reached.

#### How to label the leaves of a decision tree

- A leaf will usually have a data subset containing many class labels
- Choose the class that has the most items in the subset
- \*\* Alternatively, label the leaf with the number it contains in each class for a probabilistic "soft" classification.

#### Pros and Cons of a decision tree

# Pros:

**\*** Cons:

#### Random Forest – forest of decision trees

- \*\* Build the random forest by training each decision tree on a random subset with replacement from the training data and subset of features are also randomly selected--- "Bagging"
- Evaluate the random forest by testing on its out-of-bag items
- Classify by merging the classifications of individual decision trees
  - \*\* By simple vote
  - Or by adding soft classifications together and then take a vote

## An example of bagging

Drawing random samples from our training set with replacement. E.g., if our training set consists of 7 training samples, our bootstrap samples (here: n=7) can look as follows, where C<sub>1</sub>, C<sub>2</sub>, ... C<sub>m</sub> shall symbolize the decision tree classifiers.

| Sample indices |   | Bagging<br>Round 2 | <br>Bagging<br>Round M |
|----------------|---|--------------------|------------------------|
| 1              | 2 | 7                  |                        |
| 2              | 2 | 3                  |                        |
| 3              | 1 | 2                  |                        |
| 4              | 3 | 1                  |                        |
| 5              | 4 | 1                  |                        |
| 6              | 7 | 7                  |                        |
| 7              | 2 | 1                  |                        |
|                |   |                    |                        |

#### Pros and Cons of Random forest

# Pros:

# Cons:

# Q2. Do you think random forest will always outperform simple decision tree?

A. Yes

B. No

# Considerations in choosing a classifier

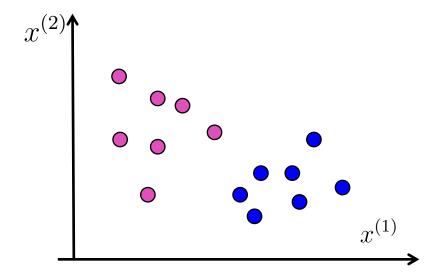
- When solving a classification problem, it is good to try several techniques.
- Criteria to consider in choosing the classifier include

#### Support Vector Machine (SVM) overview

- \*\* The Decision boundary and function of a Support Vector Machine
- \*\* Loss function (cost function in the book)
- \* Training
- **\*** Validation
- **\*\*** Extension to multiclass classification

### SVM problem formulation

- \* At first we assume a binary classification problem
- \* The training set consists of N items
  - Feature vectors x<sub>i</sub> of dimension d
  - \*\* Corresponding class labels  $y_i \in \{\pm 1\}$
- We can picture the training data as a d-dimensional scatter plot with colored labels



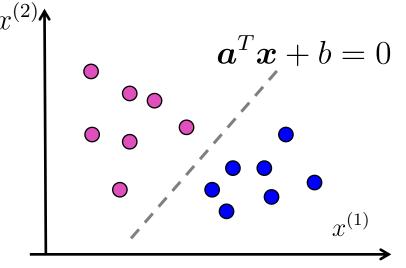
## Decision boundary of SVM

- SVM uses a hyperplane as its
   decision boundary
- \* The decision boundary is:

$$a_1 x^{(1)} + a_2 x^{(2)} + \dots + a_d x^{(d)} + b = 0$$

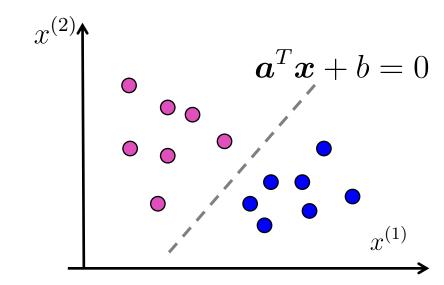
\*\* In vector notation, the hyperplane can be written as:

$$\boldsymbol{a}^T \boldsymbol{x} + b = 0$$



# Q3. How many solutions can we have for the decision boundary?

- A. One
- B. Several
- C. Infinite

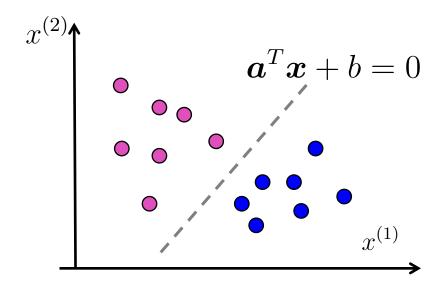


### Classification function of SVM

SVM assigns a class label to a feature vector according to the following rule:

+1 if 
$$\boldsymbol{a}^T \boldsymbol{x}_i + b \ge 0$$
  
-1 if  $\boldsymbol{a}^T \boldsymbol{x}_i + b < 0$ 

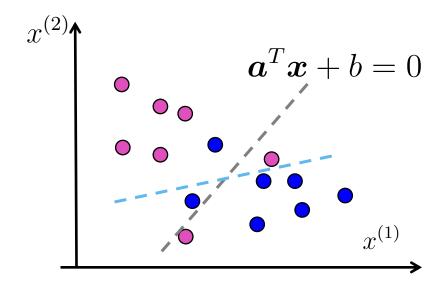
\*\* In other words, the classification function is:  $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b)$ 



- Note that
  - \*\* If  $|{m a}^T{m x}_i+b|$  is small, then  ${m x}_i$  was close to the decision boundary
  - \*\* If  $|m{a}^Tm{x}_i+b|$  is large, then  $m{x}_i$  was far from the decision boundary

### What if there is no clean cut boundary?

- Some boundaries are better than others for the training data
- Some boundaries are likely more robust for run-time data
- We need to a quantitative measure to decide about the boundary
- \*\* The loss function can help decide if one boundary is better than others



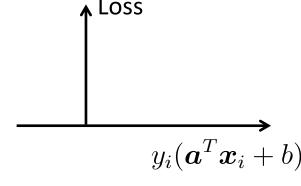
#### Loss function 1

- st For any given feature vector  $m{x}_i$  with class label  $y_i \in \{\pm 1\}$  we want
  - \* Zero loss if  $\boldsymbol{x}_i$  is classified correctly  $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b)=y_i$
  - st Positive loss if  $m{x}_i$ is misclassified  $sign(m{a}^Tm{x}_i+b) 
    eq y_i$
  - \*\* If  $m{x}_i$  is misclassified, more loss is assigned if it's further away from the boundary
- \* This loss function 1 meets the criteria above:

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

\* Training error cost

$$S(\boldsymbol{a}, b) = \frac{1}{N} \sum_{i=1}^{N} max(0, -y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$



### Q4. What's the value of this function?

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$
 if  $sign(\boldsymbol{a}^T\boldsymbol{x}_i + b) = y_i$ 

A. 0.

B. others.

### Q5. What's the value of this function?

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$
 if  $sign(\boldsymbol{a}^T\boldsymbol{x}_i + b) \neq y_i$ 

- A. 0.
- B. A value greater than or equal to 0.

### The problem with loss function 1

- \*\* Loss function 1 does not distinguish between the following decision boundaries if they both classify  $m{x}_i$  correctly.
  - One passes the two classes closely
  - \* One that passes with a wider margin

But leaving a larger margin gives robustness for run-time data- the large margin principle

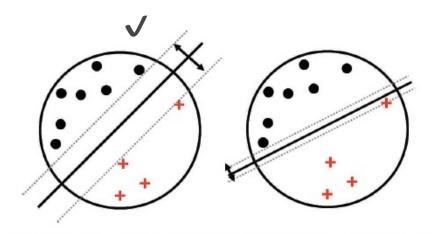


Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin. Right: a separating hyper-plane with small margin.

Credit: Kelvin Murphy

# Q6. Wondering what does "support vector" mean?

A. Yes.

B. No.

Support vectors are those data points in the training data that uniquely define the decision boundary

# Q7. SVM classification is faster than decision tree in terms of time complexity

A. TRUE.

B. FALSE.

## Loss function 2: the hinge loss

- \*\* We want to impose a small positive loss if  $oldsymbol{x}_i$  is correctly classified but close to the boundary
- \* The hinge loss function meets the criteria above:

$$max(0, 1 - y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

\* Training error cost

$$S(\boldsymbol{a},b) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$

## Loss function 2: the hinge loss

- \*\* We want to impose a small positive loss if  $oldsymbol{x}_i$  is correctly classified but close to the boundary
- \* The hinge loss function meets the criteria above:

$$max(0, 1 - y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

\* Training error cost

$$S(\boldsymbol{a},b) = \frac{1}{N} \sum_{i=1}^{N} max(0, 1 - y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$
 Loss

$$y_i(\boldsymbol{a}^T\boldsymbol{x}_i+b)$$

### The problem with loss function 2

- \*\* Loss function 2 favors decision boundaries that have large  $\|a\|$  because increasing  $\|a\|$  can zero out the loss for a correctly classified  $x_i$  near the boundary.
- \*\* But large  $\|a\|$  makes the classification function  $sign(a^Tx_i + b)$  extremely sensitive to small changes in  $x_i$  and make it less robust to run-time data.
- st So small  $\|a\|$  is better.

### Assignments

- \*\* Read Chapter 11 of the textbook
- \*\* Next time: SVM-regularization, Stochastic descent

### Additional References

- \*\* Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- \*\* Morris H. Degroot and Mark J. Schervish "Probability and Statistics"
- \*\* Kelvin Murphy, "Machine learning, A Probabilistic perspective"

### See you next time

See You!

