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Examples of PCA



Diagonalization of a symmetric

If A'is an nxn symmetric square matrix, the eigenvalues
are real.

If the eigenvalues are also distinct, their eigenvectors are
orthogonal

We can then scale the eigenvectors to unit length, and
place them into an orthogonal matrix U = [u; u, .... u ]

We can write the diagonal matrix A = [J! AU/ such that
the diagonal entries of A are A, A,... A, in that order.



Diagonalization example

For

B



Covariance for a pair of components in

a data set

For the jth and kth components of a data set

X}

- (29 — mean({zW 2% o oamn (L ENT
cov({x}; j, k)= = {=)) Gz ({9h)




Covariance matrix

Data set {x } 7x8 Covmat({X }) 7x7
cov({x};3,5)




Properties of Covariance matrix

cov({x};7,7) = var({x(j)}) Covmat({X}) 7x7

The diagonal elements .
of the covariance matrix )
are just variances of :
each jth components

The off diagonals are
covariance between °
different components g




Properties of Covariance matrix

cov({x}; j, k) = cov({x}; k, 7) Covmat({x}) 7x7

The covariance
matrix is symmetric!

And it’s positive "HEEE b
semi-definite, that is I R A

all A, >0 SEE B

Covariance matrix is 7
diagonalizable




Properties of Covariance matrix

If we define X_ as the C0vmat({X}) 7x7
mean centered
matrix for dataset {x} s

XXt
Covmat({x}) = Nc o I .

The covariance ‘
matrix is a dxd matrix .




Example: covariance matrix of a data set

(1)
What are the dimensions of the

= 4 3 9 11 xw covariance matrix of this data?
1 01 —1| x=&
2 by 2
B) 5by5
5by?2
2by5




Example: covariance matrix of a data set

(0 Mean centering () A2 _ AlA{
Ay = o 43 2 1] Inner product of each pairs:
-1 1 0 1 -1 Ay[1,1] = 10
"9 10 | 5 As[2,2]1=4

= D A,[1,2]1=0

M= 0 —1] 2
(1)
Divide the matrix with N —the number of data poits 4 )

1 1110 0O 2 0
Covmat(1 X¢) = —A, = — —

(X)) = 4. 5[0 4] 0 0.8]
g J




What do the data look like when
Covmat({x}) is diagonal?

Covmat({X}) = %A2 —

> X(1)

1

5

(10 0

0 4

]:




What is the correlation between the 2

components for the data m?

Covmat(m) = [3(5) 121?)]



Q. Is this true?

Transforming a matrix with

orthonormal matrix only rotates the
data

A. Yes
B. NO



Dimension Reduction

In stead of showing more dimensions through
visualization, it’s a good idea to do dimension
reduction in order to see the major features of
the data set.

For example, principal component analysis help
find the major components of the data set.

PCA is essentially about finding eigenvectors of
the covariance matrix of the data set {x}



Dimension reduction from 2D to 1D

Credit: Prof. Forsyth




Step 1: subtract the mean

Translate center to origin g
x = 8”8
x xx‘x - x
" ® o ?“g:xix . }
B ”x ® ®
xx = o E
x x W * XQ x:? ®
% ’Q&g"xx&" o W 2
"{‘;’a*’z‘* “"g s
»® x’.*{x”x? xx e "
®
x ”‘%‘:& > »
s ® ®
w

Credit: Prof. Forsyth



Step 2: Rotate so that the new data has

diagonalized covariance matrix

Rotate to diagonalize
covariance

“
b 2
b

Credit: Prof. Forsyth



Step 3: Drop component(s)

Project to x-axis

Credit: Prof. Forsyth



Principal Components

The columns of are the normalized eigenvectors of
the Covmat({x}) and are called the principal
components of the data {x}



Principal components analysis

We reduce the dimensionality of dataset {x} represented by
matrix D, fromdtos (s <d).

Step 1. define matrix 1714y, such that m = D — mean(D)

Step 2. define matrix 7" gy, suchthat 7; = U'm,

Where U satisfies A = U’ Covmat({x})U, Alis
the diagonalization of Covmat({x}) with the eigenvalues
sorted in decreasing order, U is the orthonormal
eigenvectors’ matrix

Step 3. Define matrix P, such that Pis P with the last
d-s components of 7 made zero.



What happened to the mean?

Step 1.
mean(m) = mean(D — mean(D)) = 0
Step 2.
mean(r) = U mean(m) = U0 = 0
Step 3.
mean(p;) = mean(r;) = 0 whilei €1: s

mean(p,) =0 whilei€s+1:d



What happened to the covariances?

Step 1.

Covmat(m) = Covmat(D) = Covmat({x})
Step 2.
Covmat(r) = U Covmat(m)U = A

Step3.  Covmat(p)is A with the last/smallest d-s
diagonal terms turned to O.



Sample covariance matrix

In many statistical programs, the sample
covariance matrix is defined to be

m m?’

N —1

Covmat(m) =

Similar to what happens to the unbiased
standard deviation



PCA an example

Step 1.

13 -4 7 1 -4 -3 0
b= [7 -6 8 -1 -1 —7] = mean(D) = H

34T 1 43
|7 -6 8 -1 -1 -7
Step 2.

Step 3.



PCA an example

Step 1.

347 1 -4 =3 0
b= [7 —6 8 —1 —1 _7] = mean(D) = H

N A
7 -6 8 -1 -1 -7

Step 2.
Covmat(m) = 202 = A\ ~57; Ay ~3
25 40| = M TG A=
- U — 0.5606288 —0.8280672 UT — 0.5606288  0.8280672
~10.8280672  0.5606288 ~|—0.8280672 0.5606288

Step 3.



PCA an example

Step 1.

3 -4 7 1 —4 -3 0
b= [7 —6 8 —1 -1 —7] = mean(D) = H

N A
|7 -6 8 -1 -1 —7

Step 2.
i Covmat(m) = 202 = A\ ~57; Ay ~3
T 25 40| T M EOE A
- U — 0.5606288 —0.8280672 UT — 0.5606288  0.8280672
~10.8280672  0.5606288 ~|—0.8280672 0.5606288

T [7.478 —7.211 10.549 —0.267 —3.071 —7.478]
=r=U"m~=

1.440 —-0.052 —1.311 —1.389 2.752 —1.440

Step 3.



PCA an example

Step 1.

3 -4 7 1 —4 -3 0
D = [7 6 8 —1 —1 _7] = mean(D) = [O]

3 -4 7 1 —4 -3
M=17 6 8 -1 -1 -7

Step 2. : - 20 95 R
ovmat(m) = 95 40 = A1 =07, Ay

= 7 — 0.5606288 —0.8280672 [T _ 0.5606288  0.8280672

—10.8280672  0.5606288 | —=0.8280672 0.5606288

T [7.478 —7.211 10.549 —0.267 —3.071 —7.478]
=r=U"m~=

1.440 —-0.052 —1.311 —1.389 2.752 —1.440

Step 3 7478 —7211 10549 —0.267 —3.071 —7.478
TP 0 0 0 0 0



What is this matrix for the previous

example?

U’ Covmat(m)U =7



What is this matrix for the previous

example?

U’ Covmat(m)U =7




The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A

d
e el = 3 3 6y

1 J=s+1



The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A

1 1 I d |
mzi:\!m —pill* = ﬁz Z (r?)? — Z Z—Nl_ 1(7’§]))2

i g=s+l j=s+1 i



The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A

1 1 I d |
N1 ZZ: Irs — pill” = N1 zz: ; (r?)? — Z Z —Nl_ 1(7’§]))2

J=s+1 j=s+1 i



The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A

Jj=s+1

1 1 L d .
N_1 ZZ: |7 —Pz'HQ T N_1 zz: :zs: (7“@(]))2 = Z EZ: —Nl_ 1(7}@)2



Examples: Immune Cell Data

There are 38816 white
blood immune cells from

a mouse sample T cells
Each immune cell has
40+
features/components
B cells

Four features are used as
illustration.

There are at least 3 cell
types involved Natural killer cells




Scatter matrix of Immune Cells

There are 38816 White 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
blood immune cells from .| i I =
a mouse sample ]

T T

<

2 4 6 8 10

o -

Each immune cell has
40+ CD19
features/components

| ER PR I |
2 4 6 8 10

Four features are used
for the illustration.

T T
4 6 8 10

CD11b

T
2

Dark red: T cells
There are at least 3 cell Brown: B cells o

types involved Blue: NK cells
: other small population ——

T T T
2 4 6 8 10

T T




PCA of Immune Cells

> resl

Svalues Eigenvalues

[1] 4.7642829 2.1486896 1.3730662
0.4968255

Eigenvectors
Svectors

L1 021 03] 4] o
[1,] 0.2476698 0.00801294 -0.6822740
0.6878210
[2,] 0.3389872 -0.72010997 -0.3691532 -
0.4798492 B
[3,] -0.8298232 0.01550840-0.5156117 -
0.2128324 v
[4,] 0.3676152 0.69364033 -0.3638306 -
0.5013477

PCA_immune_cells_2

PC2

PC 1



New coordinates in PCA

> head(new_coord_t)

PC1 PC2 PC3 PC4
1 3.6739228 0.1127233-1.32744266
0.61005994
2 -0.9255199 -2.1016573 -0.80762548 -
0.29104900 .
3 3.1150230 0.3526459 -0.83994064 o
0.46074556
4 3.1801414 0.5679807 -0.07097689 § 2
0.01539266

PCA_immune_cells_2

5 2.7972723 -0.1073053 -0.39168826 - W -
0.03981390
6 3.3012610 0.1979659 0.17965423 ¥ 4

0.45373049CD3e -0.3676152 0.69364033 -
0.3638306 -0.5013477 [4,] 0.3676152 © .
0.69364033 -0.3638306 -0.5013477 | ! J ! ! ! '



What is the percentage of variance that

PC1 covers?

Given the eigenvalues: 4.7642829 2.1486896
1.3730662 0.4968255, what is the
percentage that PC1 covers?

A. 54%
B. 16%
C. 25%



Reconstructing the data

Given the projected data p,.,,and mean({x}), we can
approximately reconstruct the original data

D = Up + mean({z})
Each reconstructed data item I/D\iis a linear
combination of the columns of U weighted by P,

The columns of fyare the normalized eigenvectors of
the Covmat({x}) and are called the principal
components of the data {x}



End-to-end mean square error

Each a; becomes 7 by translation and rotation

Each P;becomes :/B\,L-by the opposite rotation and
translation

Therefore the end to end mean square error is:

1 R 1 ’
HZH%—%\V = mZH"‘z‘—Pin = Z Aj
1 { j=s+1

As+1, ---, Ag are the smallest d-s eigenvalues of the
Covmat({x})



PCA: Human face data

The dataset consists of 213 images
Each image is grayscale and has 64 by 64 resolution

We can treat each image as a vector with dimension d
= 4096

Credit: Prof. Forsyth



Value

How quickly the eigenvalues decrease?

10 |

Eigenvalues, total of 213 images Eigenvalues, total of 213 images

20
15
E
S 10 1
5 L
L L L 0 1 1 1
0 1000 2000 3000 4000 0 5 10 15 20
Number of eigenvalue Number of eigenvalue

Credit: Prof. Forsyth



What do the principal components of the
images look like?

oy

Mean image

The first 16 /

principal
components
arranged into
images

Credit: Prof. Forsyth




Reconstruction of the image

’ —
15t row show the reconstructions using
some number of principal components
2" row show the corresponding errors

The original




Q. Which are true?

A . PCA allows us to project data to the

direction along which the data has the

biggest variance

PCA allows us to compress data

C. PCA uses linear transformation to show
patterns of data

D. PCA allows us to visualize data in lower
dimensions

E. All of the above

&



Read Chapter 10 of the textbook
Week 10 module

Next time: Intro to classification



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




