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Last time

✺ Review of Bayesian inference

✺ Visualizing high dimensional data & 
Summarizing data

✺ The covariance matrix



Objectives

✺ Principal Component Analysis

✺ Examples of PCA



Diagonalization of a symmetric 
matrix
✺ If A is an n×n symmetric square matrix, the eigenvalues 

are real.

✺ If the eigenvalues are also distinct, their eigenvectors are 
orthogonal

✺ We can then scale the eigenvectors to unit length, and 
place them into an orthogonal matrix U = [u1 u2 …. un]

✺ We can write the diagonal matrix                         such that 
the diagonal entries of Λ are λ1, λ2… λn in that order. 

Λ = U
T
AU



Diagonalization example

✺ For 

A =

[

5 3

3 5

]



Covariance for a pair of components in 
a data set
✺ For the jth and kth components of a data set 

{x}

cov({x}; j, k)=
∑

i(x
(j)
i −mean({x(j)}))(x(k)

i −mean({x(k)}))T

N



Covariance matrix

1 2 3 4 5 6 7

1 * * * * * * *

2 * * * * * * *

3 * * * * * * *

4 * * * * * * *

5 * * * * * * *

6 * * * * * * *

7 * * * * * * *

Covmat(          ){x} 7×7

1 2 3 4 5 6 7 8

1 * * * * * * * *

2 * * * * * * * *

3 * * * * * * * *

4 * * * * * * * *

5 * * * * * * * *

6 * * * * * * * *

7 * * * * * * * *

cov({x}; 3, 5)

Data set{x} 7×8

{



Properties of Covariance matrix

cov({x}; j, j) = var({x(j)})
1 2 3 4 5 6 7

1 * * * * * * *

2 * * * * * * *

3 * * * * * * *

4 * * * * * * *

5 * * * * * * *

6 * * * * * * *

7 * * * * * * *

Covmat(          ){x} 7×7

✺ The diagonal elements 
of the covariance matrix 
are just variances of 
each jth components

✺ The off diagonals are 
covariance between 
different components



Properties of Covariance matrix

1 2 3 4 5 6 7

1 * * * * * * *

2 * * * * * * *

3 * * * * * * *

4 * * * * * * *

5 * * * * * * *

6 * * * * * * *

7 * * * * * * *

Covmat(          ){x} 7×7

✺ The covariance 
matrix is symmetric!

✺ And it’s positive 
semi-definite, that is 
all λi ≥ 0

✺ Covariance matrix is 
diagonalizable

cov({x}; j, k) = cov({x}; k, j)



Properties of Covariance matrix

1 2 3 4 5 6 7

1 * * * * * * *

2 * * * * * * *

3 * * * * * * *

4 * * * * * * *

5 * * * * * * *

6 * * * * * * *

7 * * * * * * *

Covmat(          ){x} 7×7✺ If we define Xc as the 
mean centered 
matrix for dataset {x}

✺ The covariance 
matrix is a d×d matrix

d =7 

Covmat({x}) =
XcX

T
c

N



Example: covariance matrix of a data set

X(1)

X(2)

What are the dimensions of the 
covariance matrix of this data?

A) 2 by 2
B) 5 by 5
C) 5 by 2
D) 2 by 5

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

(I)



Example: covariance matrix of a data set

Mean centering
(I)

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

Inner product of each pairs:
[1,1] = 10
[2,2] = 4
[1,2] = 0

(II)

A2

A2

A2

A2 = A1A
T

1

A1 =

[

2 1 0 −1 −2

−1 1 0 1 −1

]

Covmat(       ){x}

Divide the matrix with N – the number of data poits

(III)

=
1

N
A2 =

1

5

[

10 0

0 4

]

=

[

2 0

0 0.8

]



What do the data look like when 
Covmat({x}) is diagonal?

*

*

*

*

*

Covmat(       ){x} =
1

N
A2 =

1

5

[

10 0

0 4

]

=

[

2 0

0 0.8

]

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

X(1)

X(2)

X(1)

X(2)



What is the correlation between the 2 
components for the data m?

Covmat(m) =

[

20 25
25 40

]



Q. Is this true?

Transforming a matrix with 
orthonormal matrix only rotates the 
data

A. Yes

B. No



Dimension Reduction

✺ In stead of showing more dimensions through 
visualization, it’s a good idea to do dimension 
reduction in order to see the major features of 
the data set.

✺ For example, principal component analysis help 
find the major components of the data set.

✺ PCA is essentially about finding eigenvectors of 
the covariance matrix of the data set {x}



Dimension reduction from 2D to 1D

Credit: Prof. Forsyth



Step 1: subtract the mean

Credit: Prof. Forsyth



Step 2: Rotate so that the new data has 
diagonalized covariance matrix

Credit: Prof. Forsyth



Step 3: Drop component(s)

Credit: Prof. Forsyth



Principal Components 

✺ The columns of      are the normalized eigenvectors of 
the Covmat({x}) and are called the principal 
components of the data {x} 

U



Principal components analysis
✺ We reduce the dimensionality of dataset {x} represented by 

matrix             from d to s (s < d). 

✺ Step 1. define matrix such that

✺ Step 2. define matrix                 such that                           

Where        satisfies                                                        ,       is 
the diagonalization of                            with the eigenvalues 
sorted in decreasing order,        is the orthonormal 
eigenvectors’ matrix

✺ Step 3. Define matrix                such that      is   with the last   
d-s components of made zero.               

Dd×n

md×n m = D −mean(D)

rd×n
ri = U

T
mi

U
T Λ = U

T
Covmat({x})U Λ

Covmat({x})

p r

r

U

pd×n



What happened to the mean?
✺ Step 1. 

✺ Step 2. 

✺ Step 3. 

mean(m) = mean(D −mean(D)) = 0

mean(r) = U
T
mean(m) = U

T0 = 0

mean(pi) = mean(ri) = 0

mean(pi) = 0 while i ∈ s+ 1 : d

while i ∈ 1 : s



What happened to the covariances?
✺ Step 1. 

✺ Step 2. 

✺ Step 3.                              is            with the last/smallest d-s 
diagonal terms turned to 0.

Covmat(m) = Covmat(D) = Covmat({x})

Covmat(r) = U
T
Covmat(m)U = Λ

Covmat(p) Λ



Sample covariance matrix

✺ In many statistical programs, the sample 
covariance matrix is defined to be

✺ Similar to what happens to the unbiased 
standard deviation 

Covmat(m) =
m m

T

N − 1



PCA an example
✺ Step 1. 

✺ Step 2. 

✺ Step 3.

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]



PCA an example
✺ Step 1. 

✺ Step 2. 

✺ Step 3.

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]



PCA an example
✺ Step 1. 

✺ Step 2. 

✺ Step 3.

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ r = U
T
m =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

1.440 −0.052 −1.311 −1.389 2.752 −1.440

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]



PCA an example
✺ Step 1. 

✺ Step 2. 

✺ Step 3.

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ r = U
T
m =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

1.440 −0.052 −1.311 −1.389 2.752 −1.440

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]

⇒ p =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

0 0 0 0 0 0

]



What is this matrix for the previous 
example?

U
T
Covmat(m)U =?



What is this matrix for the previous 
example?

U
T
Covmat(m)U =?

[

57 0

0 3

]



The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2



The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2



The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2

=
d∑

j=s+1

var(r(j)i )



The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2

=
d∑

j=s+1

var(r(j)i )

=

d∑

j=s+1

λj



Examples: Immune Cell Data
✺ There are 38816 white 

blood immune cells from 
a mouse sample

✺ Each immune cell has 
40+ 
features/components

✺ Four features are used as 
illustration.

✺ There are at least 3 cell 
types involved

T cells

B cells

Natural killer cells



Scatter matrix of Immune Cells
✺ There are 38816 white 

blood immune cells from 
a mouse sample

✺ Each immune cell has 
40+ 
features/components

✺ Four features are used 
for the illustration.

✺ There are at least 3 cell 
types involved

Dark red: T cells
Brown: B cells
Blue: NK cells
Cyan: other small population



PCA of Immune Cells 
> res1
$values
[1] 4.7642829 2.1486896 1.3730662 
0.4968255

$vectors
[,1]        [,2]       [,3]       [,4]

[1,]  0.2476698  0.00801294 -0.6822740  
0.6878210
[2,]  0.3389872 -0.72010997 -0.3691532 -
0.4798492
[3,] -0.8298232  0.01550840 -0.5156117 -
0.2128324
[4,]  0.3676152  0.69364033 -0.3638306 -
0.5013477

Eigenvalues

Eigenvectors



New coordinates in PCA
> head(new_coord_t)

PC1        PC2         PC3         PC4
1  3.6739228  0.1127233 -1.32744266  
0.61005994
2 -0.9255199 -2.1016573 -0.80762548 -
0.29104900
3  3.1150230  0.3526459 -0.83994064  
0.46074556
4  3.1801414  0.5679807 -0.07097689  
0.01539266
5  2.7972723 -0.1073053 -0.39168826 -
0.03981390
6  3.3012610  0.1979659  0.17965423  
0.45373049CD3e  -0.3676152  0.69364033 -
0.3638306 -0.5013477 [4,]  0.3676152  
0.69364033 -0.3638306 -0.5013477



What is the percentage of variance that 
PC1 covers?

Given the eigenvalues: 4.7642829 2.1486896 
1.3730662 0.4968255, what is the 
percentage that PC1 covers?

A. 54%
B. 16%
C. 25%



Reconstructing the data

✺ Given the projected data           and mean({x}), we can 
approximately reconstruct the original data 

✺ Each reconstructed data item       is a linear 
combination of the columns of      weighted by 

✺ The columns of      are the normalized eigenvectors of 
the Covmat({x}) and are called the principal 
components of the data {x} 

pd×n

D̂i

U

piU

D̂ = Up+mean({x})



End-to-end mean square error

✺ Each        becomes      by translation and rotation

✺ Each       becomes       by the opposite rotation and 
translation

✺ Therefore the end to end mean square error is:

✺ are the smallest d-s eigenvalues of the 
Covmat({x})
λs+1, ...,λd

1

N − 1

∑

i

‖x̂i − xi‖
2
=

1

N − 1

∑

i

‖ri − pi‖
2
=

d∑

j=s+1

λj

xi ri

pi x̂i



PCA: Human  face data 

✺ The dataset consists of 213 images

✺ Each image is grayscale and has 64 by 64 resolution

✺ We can treat each image as a vector with dimension d 
= 4096

Credit: Prof. Forsyth



How quickly the eigenvalues decrease?

Credit: Prof. Forsyth



What do the principal components of the 
images look like?

Mean image

The first 16 
principal 
components 
arranged into 
images

Credit: Prof. Forsyth



Reconstruction of the image

The original

1Mean 5 10 20 50 100

1st row show the reconstructions using 
some number of principal components
2nd row show the corresponding errors

Credit: Prof. Forsyth



Q. Which are true?

A . PCA allows us to project data to the 
direction along which the data has the 
biggest variance

B. PCA allows us to compress data
C. PCA uses linear transformation to show 

patterns of data
D. PCA allows us to visualize data in lower 

dimensions
E. All of the above



Assignments

✺Read Chapter 10 of the textbook

✺Week 10 module

✺Next time: Intro to classification



Additional References

✺ Robert V. Hogg, Elliot A. Tanis and Dale L. 
Zimmerman. “Probability and Statistical 
Inference” 

✺ Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time

See
You!


