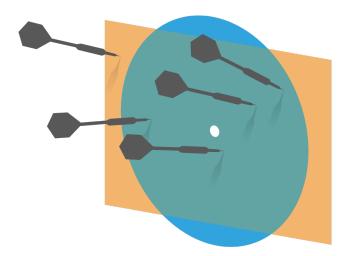
Probability and Statistics for Computer Science



Principal Component Analysis ---Exploring the data in less dimensions

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.27.2021

Last time

- Review of Bayesian inference
- Wisualizing high dimensional data & Summarizing data
- * The covariance matrix

Objectives

- # Principal Component Analysis
- # Examples of PCA

Diagonalization of a symmetric matrix

- If A is an n×n symmetric square matrix, the eigenvalues are real.
- If the eigenvalues are also distinct, their eigenvectors are orthogonal
- We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix $U = [\mathbf{u}_1 \, \mathbf{u}_2 \, ..., \, \mathbf{u}_n]$
- We can write the diagonal matrix $\Lambda = U^T A U$ such that the diagonal entries of Λ are λ_1 , λ_2 ... λ_n in that order.

Diagonalization example

₭ For

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

Covariance for a pair of components in a data set

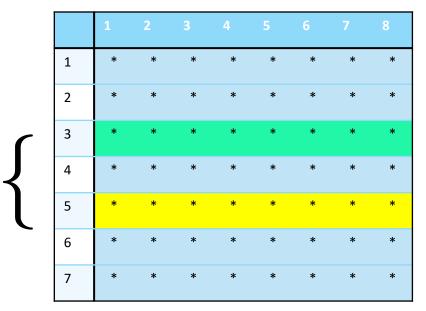
For the jth and kth components of a data set {x}

$$cov(\{x\}; j, k) = \frac{\sum_{i} (x_{i}^{(j)} - mean(\{x^{(j)}\}))(x_{i}^{(k)} - mean(\{x^{(k)}\}))^{T}}{N}$$

Covariance matrix

Data set
$$ig\{\mathbf{X}ig\}$$
 7×8

 $cov({\mathbf{x}}; 3, 5)$



Covmat(
$$\{\mathbf{X}\}$$
) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

$$cov(\{x\}; j, j) = var(\{x^{(j)}\})$$
 Covmat($\{\mathbf{x}\}$) 7×7

- The diagonal elements
 of the covariance matrix
 are just variances of
 each jth components
- The off diagonals are covariance between different components

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

$$cov(\{x\}; j, k) = cov(\{x\}; k, j)$$

Covmat(
$$\{\mathbf{X}\}$$
) 7×7

* The covariance matrix is symmetric!

- And it's positive
 semi-definite, that is
 all $λ_i ≥ 0$
- Covariance matrix is diagonalizable

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

If we define X_c as the mean centered matrix for dataset {x}

$$Covmat(\{x\}) = \frac{X_c X_c^T}{N}$$

* The covariance matrix is a d×d matrix

Covmat(
$$\{\mathbf{X}\}$$
) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Example: covariance matrix of a data set

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{array}{c} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{array}$$

(I)

What are the dimensions of the covariance matrix of this data?

Example: covariance matrix of a data set

(111)

Divide the matrix with N – the number of data poits

Covmat({x}) =
$$\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0\\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 0 & 0.8 \end{bmatrix}$$

What do the data look like when Covmat({x}) is diagonal?

X(2) $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}_{\mathbf{X}^{(1)}}^{\mathbf{X}^{(1)}}$ $X^{(1)}$ * **Covmat({x})** = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0\\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 0 & 0.8 \end{bmatrix}$

What is the correlation between the 2 components for the data m?

$$Covmat(\boldsymbol{m}) = \begin{bmatrix} 20 & 25\\ 25 & 40 \end{bmatrix}$$

Q. Is this true?

Transforming a matrix with orthonormal matrix only rotates the data

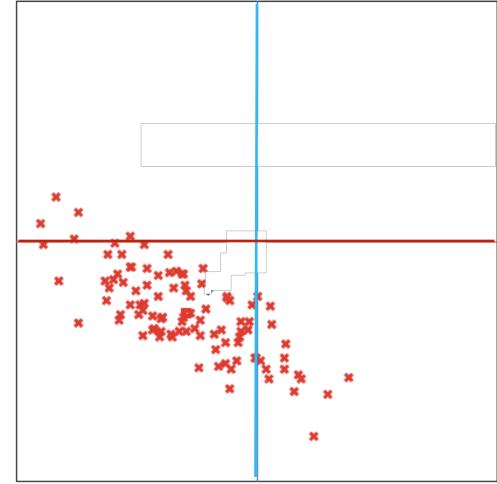
A. Yes

B. No

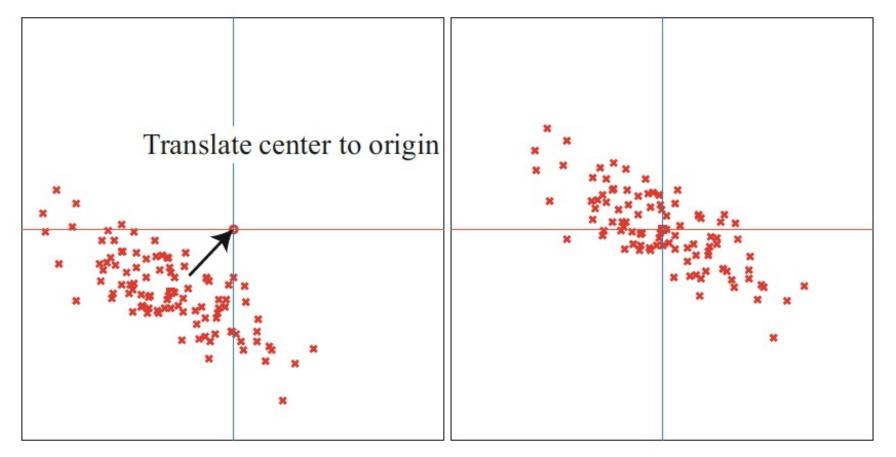
Dimension Reduction

- In stead of showing more dimensions through visualization, it's a good idea to do dimension reduction in order to see the major features of the data set.
- * For example, principal component analysis help find the major components of the data set.
- ** PCA is essentially about finding eigenvectors of the covariance matrix of the data set {x}

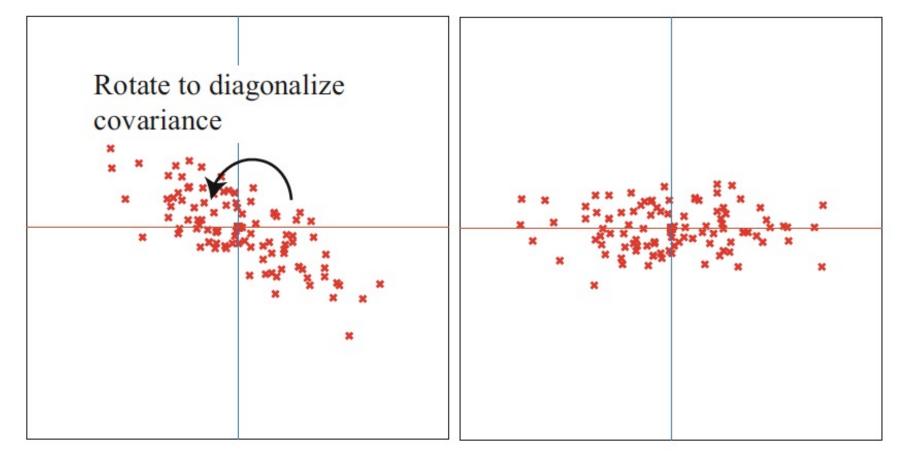
Dimension reduction from 2D to 1D



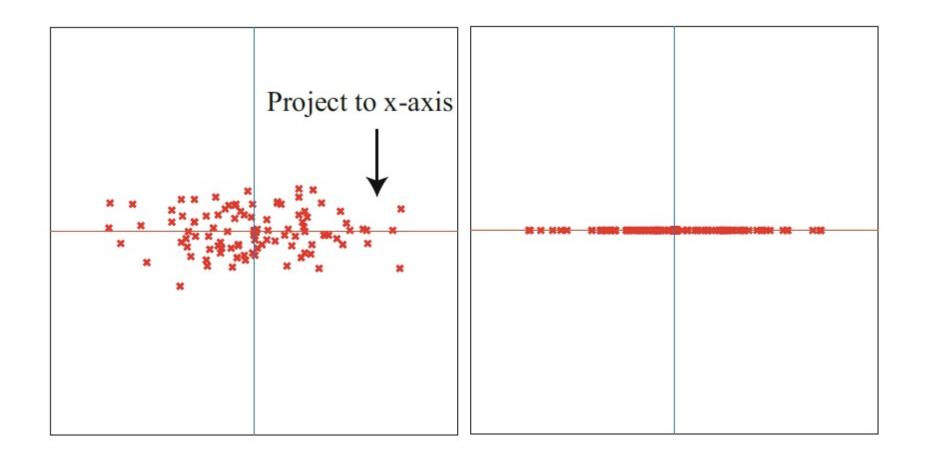
Step 1: subtract the mean



Step 2: Rotate so that the new data has diagonalized covariance matrix



Step 3: Drop component(s)



Principal Components

* The columns of Uare the normalized eigenvectors of the Covmat({x}) and are called the principal components of the data {x}

Principal components analysis

- We reduce the dimensionality of dataset $\{x\}$ represented by matrix $D_{d \times n}$ from d to s (s < d).
- ** Step 1. define matrix $oldsymbol{m}_{d imes n}$ such that $oldsymbol{m} = oldsymbol{D} mean(oldsymbol{D})$
- \ast Step 2. define matrix $oldsymbol{r}_{d imes n}$ such that $oldsymbol{r}_i = oldsymbol{U}^Toldsymbol{m}_i$

Where U^T satisfies $\Lambda = U^T Covmat(\{x\})U$, Λ is the diagonalization of $Covmat(\{x\})$ with the eigenvalues sorted in decreasing order, U is the orthonormal eigenvectors' matrix

** Step 3. Define matrix $oldsymbol{p}_{d imes n}$ such that $oldsymbol{p}$ is $oldsymbol{r}$ with the last d-s components of $oldsymbol{r}$ made zero.

What happened to the mean?

$$mean(\boldsymbol{m}) = mean(\boldsymbol{D} - mean(\boldsymbol{D})) = 0$$

Step 2.

$$mean(\boldsymbol{r}) = \boldsymbol{U}^T mean(\boldsymbol{m}) = \boldsymbol{U}^T \boldsymbol{0} = \boldsymbol{0}$$

Step 3.

$$mean(\boldsymbol{p_i}) = mean(\boldsymbol{r_i}) = 0 \quad while \ i \in 1:s$$
$$mean(\boldsymbol{p_i}) = 0 \quad while \ i \in s+1:d$$

What happened to the covariances?

₭ Step 1.

$$Covmat(\boldsymbol{m}) = Covmat(\boldsymbol{D}) = Covmat(\{\boldsymbol{x}\})$$

Step 2.

$$Covmat(\boldsymbol{r}) = \boldsymbol{U}^T Covmat(\boldsymbol{m}) \boldsymbol{U} = \boldsymbol{\Lambda}$$

* Step 3. Covmat(p) is Λ with the last/smallest d-s diagonal terms turned to 0.

Sample covariance matrix

In many statistical programs, the sample covariance matrix is defined to be

$$Covmat(\boldsymbol{m}) = \frac{\boldsymbol{m} \ \boldsymbol{m}^T}{N-1}$$

Similar to what happens to the unbiased standard deviation

℁ Step 1.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(\mathbf{D}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$

Step 2.

℁ Step 1.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(\mathbf{D}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathbf{m} = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$
Step 2.
$$Covmat(\mathbf{m}) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \ \lambda_2 \simeq 3$$
$$\Rightarrow \mathbf{U} = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad \mathbf{U}^{\mathbf{T}} = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

⊯

℁ Step 1.

⊯

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(D) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$
Step 2.
$$Covmat(m) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \ \lambda_2 \simeq 3$$
$$\Rightarrow U = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad U^T = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$
$$\Rightarrow r = U^T m = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 1.440 & -0.052 & -1.311 & -1.389 & 2.752 & -1.440 \end{bmatrix}$$

* Step 1.

⊯

⊯

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(D) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$
Step 2.
$$Covmat(m) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \ \lambda_2 \simeq 3$$

$$\Rightarrow U = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad U^T = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

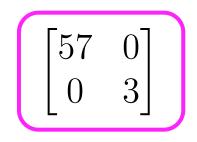
$$\Rightarrow r = U^T m = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 1.440 & -0.052 & -1.311 & -1.389 & 2.752 & -1.440 \end{bmatrix}$$
Step 3.
$$\Rightarrow p = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

What is this matrix for the previous example?

 $\boldsymbol{U}^T Covmat(\boldsymbol{m})\boldsymbol{U} = ?$

What is this matrix for the previous example?

$\boldsymbol{U}^T Covmat(\boldsymbol{m})\boldsymbol{U} = ?$



$$\frac{1}{N-1}\sum_{i}\|r_{i}-p_{i}\|^{2} = \frac{1}{N-1}\sum_{i}\sum_{j=s+1}^{d}(r_{i}^{(j)})^{2}$$

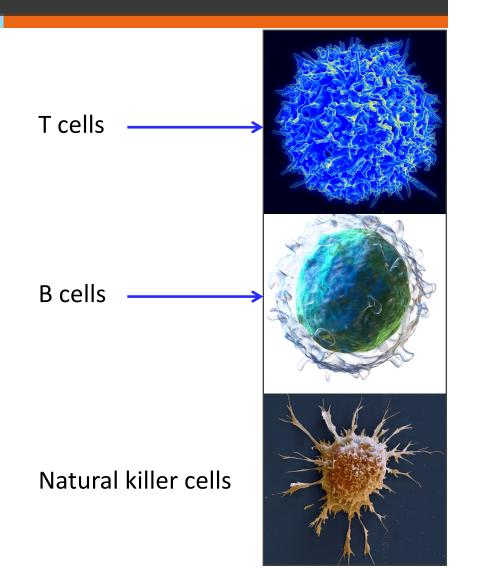
$$\frac{1}{N-1}\sum_{i}\|r_{i}-p_{i}\|^{2} = \frac{1}{N-1}\sum_{i}\sum_{j=s+1}^{d}(r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d}\sum_{i}\frac{1}{N-1}(r_{i}^{(j)})^{2}$$

$$\frac{1}{N-1} \sum_{i} ||r_{i} - p_{i}||^{2} = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_{i}^{(j)})^{2}$$
$$= \sum_{j=s+1}^{d} var(r_{i}^{(j)})$$

$$\frac{1}{N-1} \sum_{i} ||r_{i} - p_{i}||^{2} = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_{i}^{(j)})^{2}$$
$$= \sum_{j=s+1}^{d} var(r_{i}^{(j)})$$
$$= \sum_{j=s+1}^{d} \lambda_{j}$$

Examples: Immune Cell Data

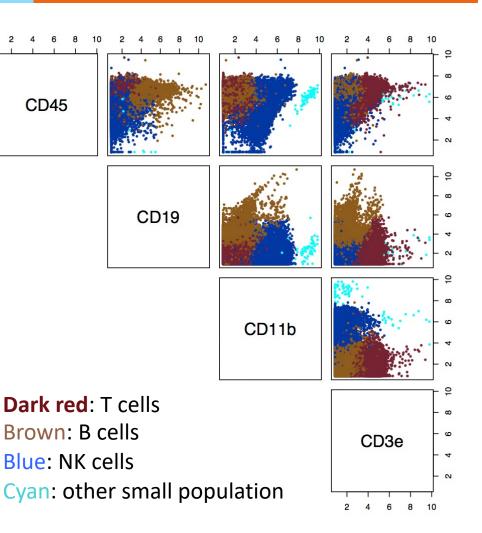
- There are 38816 white blood immune cells from a mouse sample
- Each immune cell has
 40+
 features/components
- Four features are used as illustration.
- * There are at least 3 cell types involved



Scatter matrix of Immune Cells

N

- There are 38816 white blood immune cells from a mouse sample
- Each immune cell has
 40+
 features/components
- Four features are used for the illustration.
- * There are at least 3 cell types involved



PCA of Immune Cells

> res1
\$values
Eigenvalues
[1] 4.7642829 2.1486896 1.3730662
0.4968255

Eigenvectors

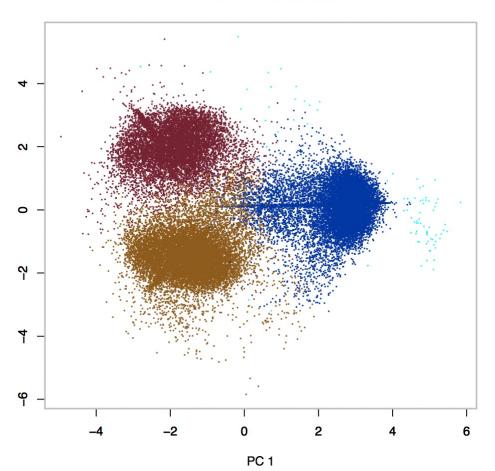
\$vectors

[,1] [,2] [,3] [,4] [1,] 0.2476698 0.00801294 -0.6822740 0.6878210

[2,] 0.3389872 -0.72010997 -0.3691532 -0.4798492

[3,] -0.8298232 0.01550840 -0.5156117 -0.2128324

[4,] 0.3676152 0.69364033 -0.3638306 -0.5013477 PCA_immune_cells_2



New coordinates in PCA

> head(new_coord_t)

PC1 PC2 PC3 PC4

1 3.6739228 0.1127233 -1.32744266 0.61005994

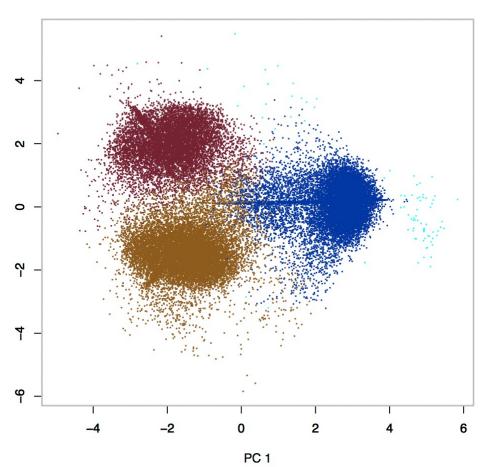
2 -0.9255199 -2.1016573 -0.80762548 -0.29104900

3 3.1150230 0.3526459 -0.83994064 0.46074556

4 3.1801414 0.5679807 -0.07097689 0.01539266

5 2.7972723 -0.1073053 -0.39168826 -0.03981390

6 3.3012610 0.1979659 0.17965423 0.45373049CD3e -0.3676152 0.69364033 -0.3638306 -0.5013477 [4,] 0.3676152 0.69364033 -0.3638306 -0.5013477



What is the percentage of variance that PC1 covers?

Given the eigenvalues: 4.7642829 2.1486896 1.3730662 0.4968255, what is the percentage that PC1 covers?

- A. 54%
- B. 16%
- C. 25%

Reconstructing the data

* Given the projected data $p_{d imes n}$ and mean({x}), we can approximately reconstruct the original data

$$\widehat{D} = Up + mean(\{x\})$$

- * Each reconstructed data item $\widehat{m{D}_i}$ is a linear combination of the columns of $m{U}$ weighted by $m{p}_i$
- * The columns of U are the normalized eigenvectors of the Covmat({x}) and are called the principal components of the data {x}

End-to-end mean square error

- * Each \boldsymbol{x}_i becomes \boldsymbol{r}_i by translation and rotation
- * Each $oldsymbol{p}_i$ becomes $\widehat{oldsymbol{x}}_i$ by the opposite rotation and translation
- * Therefore the end to end mean square error is:

$$\frac{1}{N-1} \sum_{i} \|\widehat{x}_{i} - x_{i}\|^{2} = \frac{1}{N-1} \sum_{i} \|r_{i} - p_{i}\|^{2} = \sum_{j=s+1}^{d} \lambda_{j}$$

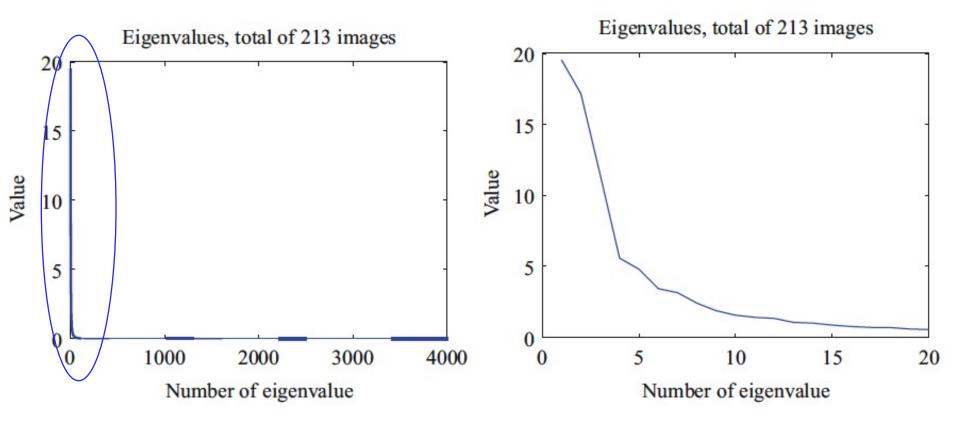
 $\ \ \lambda_{s+1},...,\lambda_d$ are the smallest d-s eigenvalues of the Covmat({x})

PCA: Human face data

- * The dataset consists of 213 images
- * Each image is grayscale and has 64 by 64 resolution
- We can treat each image as a vector with dimension d
 = 4096

Credit: Prof. Forsyth

How quickly the eigenvalues decrease?



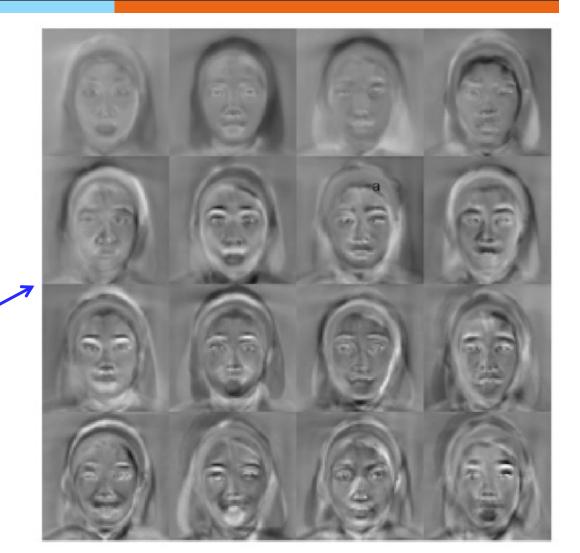
Credit: Prof. Forsyth

What do the principal components of the images look like?

Mean image

The first 16 principal components arranged into images

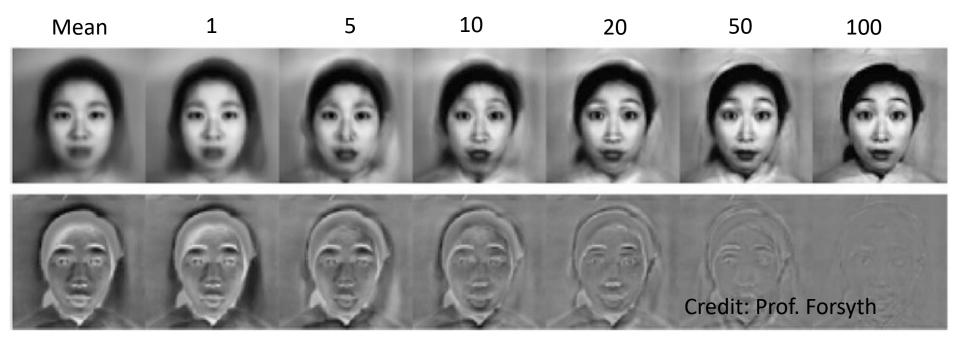
Credit: Prof. Forsyth



Reconstruction of the image

The original

 1^{st} row show the reconstructions using some number of principal components 2^{nd} row show the corresponding errors



Q. Which are true?

- A . PCA allows us to project data to the direction along which the data has the biggest variance
- B. PCA allows us to compress data
- C. PCA uses linear transformation to show patterns of data
- D. PCA allows us to visualize data in lower dimensions
- E. All of the above

Assignments

Read Chapter 10 of the textbook

Week 10 module

** Next time: Intro to classification

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

