
Probability and Statistics for Computer Science

"In statistics we apply probability to draw conclusions from data." --- Prof. J. Orloff

Credit: wikipedia

Objectives

- ****Review Sample mean, CI**
- **t-distribution (II)
- ****Bootstrap simulation**

Sample statistic

- ****** A **statistic** is a function of a dataset
 - ** For example, the mean or median of a dataset is a statistic

**** Sample statistic**

- ** Is a statistic of the data set that is formed by the realized sample
- ** For example, the realized sample mean

Q. Is this a sample statistic?

** The largest integer that is smaller than or equal to the mean of a sample

A. Yes

B. No.

Q. Is this a sample statistic?

** The interquartile range of a sample

A. Yes

B. No.

Confidence intervals for other sample statistics

- ** Sample statistic such as *median* and others are also interesting for drawing conclusion about the population
- It's often difficult to derive the analytical expression in terms of stderr for the corresponding random variable
- ****** So we can use simulation...

Bootstrap for confidence interval of other sample statistics

- ** Bootstrap is a method to construct confidence interval for any* sample statistics using resampling of the sample data set
- ** Bootstrapping is essentially uniform random sampling with replacement on the sample of size N

Bootstrap for confidence interval of other sample statistics

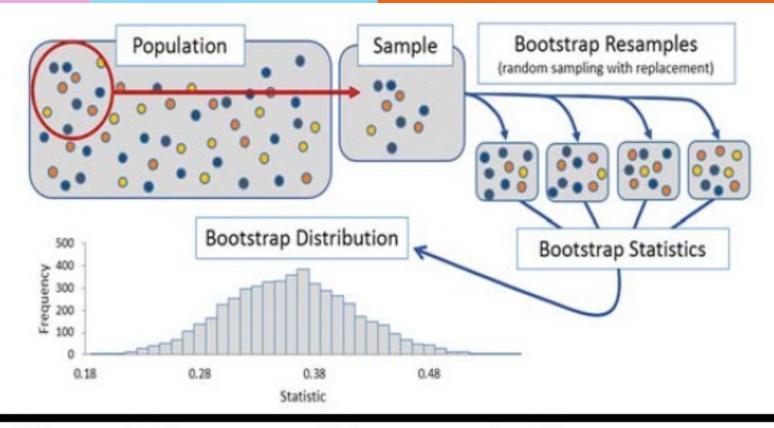


Figure 1. Summary of Bootstrapping Process

Credit: E S. Banjanovic and J. W. Osborne, 2016, PAREonline

Example of Bootstrap for confidence interval of sample median

- ** The realized sample of student attendance {12,10,9,8,10,11,12,7,5,10}, *N*=10, median=10
- # Generate a random index uniformly from [1,10] that correspond to the 10 numbers in the sample, ie. if index=6, the bootstrap sample's number will be 11.
- * Repeat the process 10 times to get one bootstrap sample

Bootstrap replicate	Sample median
{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}	10

Example of Bootstrap for confidence interval of sample median

** The realized sample of student attendance {12,10,9,8,10,11,12,7,5,10}, *N*=10, median=10

Bootstrap replicate	Sample median
{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}	10
{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}	10
{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}	8.5
• • •	•••

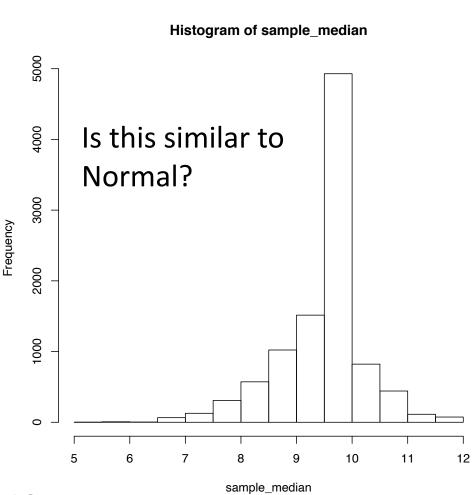
Q. How many possible bootstrap replicates?

A. 10^{10} B.10! C. e^{10}

Bootstrap replicate	Sample median
{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}	10
{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}	10
{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}	8.5
• • •	•••

Example of Bootstrap for confidence interval of sample median

Do the bootstrapping for r = 10000 times, then draw the histogram and also find the stderr of sample median)

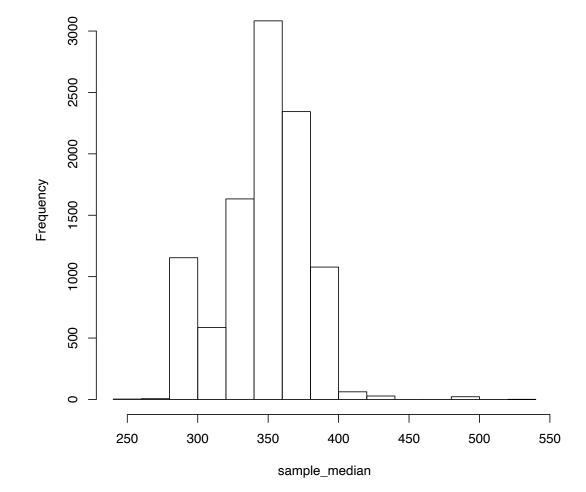

Bootstrap replicate	Sample median
{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}	10
{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}	10
{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}	8.5
• • •	•••

Example of Bootstrap for confidence interval of sample median

** Bootstrapping for r = 10000 times, then draw the histogram and also find the stderr of sample median.

$$stderr(\{S\}) = \sqrt{\frac{\sum_{i} [S(\{x\}_i) - \overline{S}]^2}{r - 1}}$$

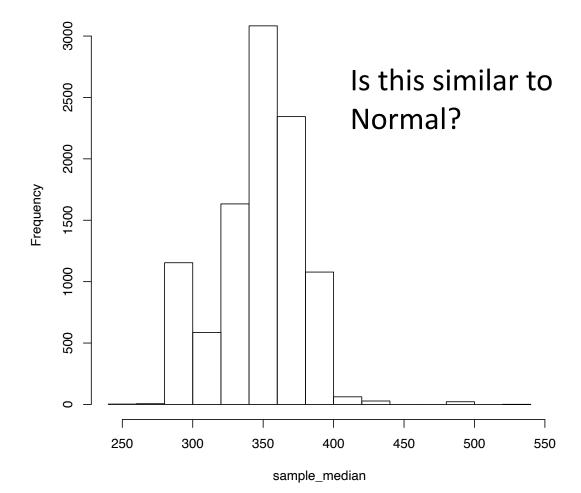
mean(Sample Median) = 9.73625 stderr(Sample Median) = 0.7724446


Errors in Bootstrapping

- ** The distribution simulated from bootstrapping is called empirical distribution. It is not the true population distribution. **There is a statistical error**.
- ** The number of bootstrapping replicates may not be enough. **There is a numerical error**.
- When the statistic is not a well behaving one, such as maximum or minimum of a data set, the bootstrap method may fail to simulate the true distribution.

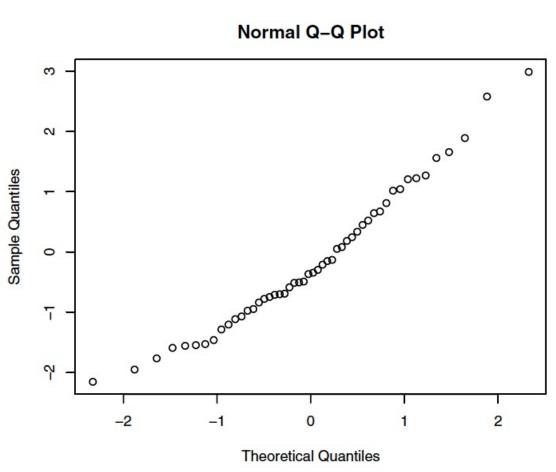
CEO salary example with larger N = 59

** The realized sample of CEO salary N=59, median=350 K


mean(Sample Median) = 348.0378 stderr(Sample Median) = 27.30539 Histogram of the Bootstrap sample medians

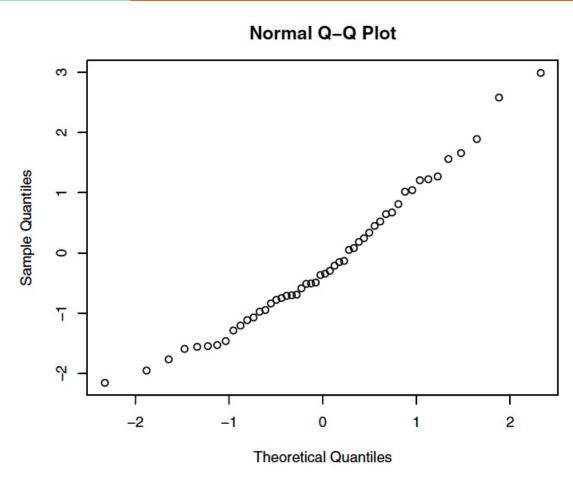
CEO salary example with larger N = 59

** The realized sample of CEO salary N=59, median=350 K


mean(Sample Median) = 348.0378 stderr(Sample Median) = 27.30539 Histogram of the Bootstrap sample medians

Checking whether it's normal by Normal Q-Q plot

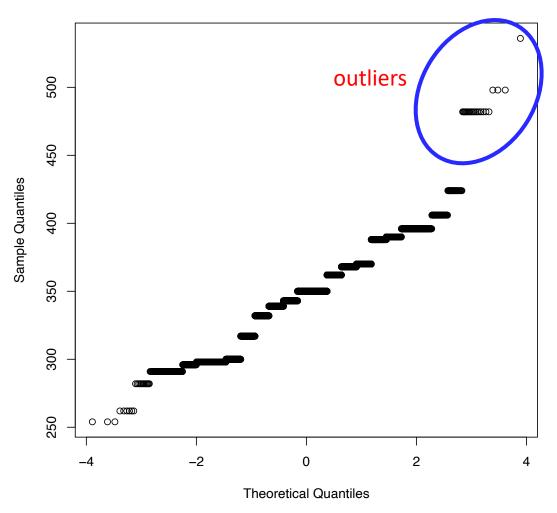
** Q-Q compares a distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph



Checking whether it's normal by Normal Q-Q plot

** Q-Q compares a distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph

** Linear means similar to normal!

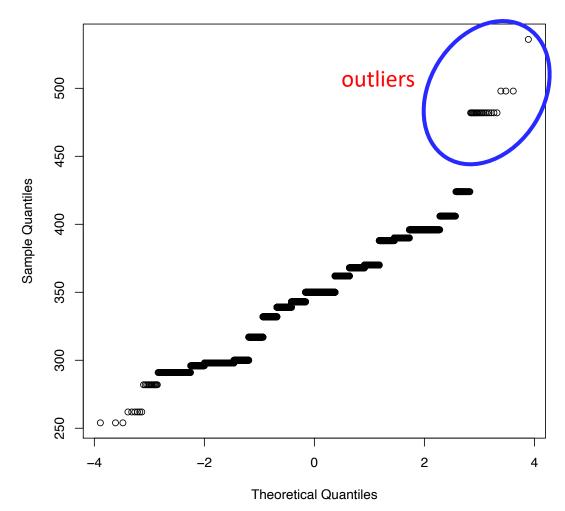


Normal Distribution's Quantile

CEO salary sample median's Q-Q plot

- Q-Q plot of CEO salary's bootstrap sample medians
- It's roughly linear so it's close to normal.
- We can use the normal distribution to construct the confidence intervals

CEO Bootstap Sample Median Q-Q Plot


CEO salary sample median's Q-Q plot

95% confidence interval for the median CEO salary from the bootstrap simulation

* 348.0378±
2×27.30539

= [293.427, 402.6486]

CEO Bootstap Sample Median Q-Q Plot

Assignments

- ** Read Chapter 7 of the textbook
- ** Week 8 module on Canvas
- ** Next time: hypothesis testing

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See you!

