Probability and Statistics for Computer Science

Can we call e the exciting e?

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.29.2021

What is the number?

 $e^{x} = \sum_{k=0}^{\infty} a_{k} x^{k}$ $a_k = ? \frac{1}{k!}$ f (x) Trylor

What is the number?

 $e^{x} = \sum_{k=0}^{\infty} a_{k} x^{k}$ $a_k = ? \frac{1}{k!}$ $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ e = 1 $(e^{x})'=e^{x}$

What is the number?

 $= \sum_{k=1}^{k} \frac{1}{k!} \gamma^{k}$ $e^{x} = \sum_{k=0}^{\infty} a_{k} x^{k}$ K=0 $a_k =$ k

How many empty slots?

Mashing Nitems to k slots (N>k) collisions are allowed, and will be handled by linked list. What is the expected number of empty slots? Xi = { | slot i remains empty after bashing $P(X_c = 1) = ?$ $E[X_c] = ? \land P(X_c)$ $E[\sum_{i=1}^{K} X_{i}] = K \cdot (L + K)^{N} (I - K)^{N} = \frac{1}{2}$

Last time

The classic discrete distributions Bernoulli Binomial Geometric 147 6. nometric Geometric TH K=1 (H) K=1 (H) K=1 (H) K=1 (K=k)=(1-p) p (X=k)=(1-p) p E(x)= p

Objectives

- **Poisson** distribution
- * Continuous random variable; uniform distribution
- * Exponential distribution

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

Motivation for Poisson Distri.

COVID incidences in a time interval,

and many other real world applications.

Motivation for a model called Poisson Distribution

- What's the probability of the number of incoming customers (k) in an hour?
- It's widely applicable in physics

and engineering both for modeling of time and space.

DeGroot

Simeon D. Poisson Credit: wikipedia P\$ 287-288 (1781-1840)

Poisson Distribution

Simeon D. Poisson

1781-184

* A discrete random variable X is called **Poisson** with intensity λ (λ >0) if $\sum_{k=0}^{\infty} P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$

for integer $k \ge 0$

 λ is the **average rate** of the event's occurrence

Poisson Distribution

* Poisson distribution is a valid pdf for $\sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{\lambda}$ $\sum_{k=0}^{\infty} P(X=k)$ $e^{-\lambda}k = k!$ $P(X = k) = \frac{e^{-\lambda}\lambda^k}{\pi}$ for integer $k \ge 0$

Simeon D. Poisson (1781-1840) λ is the average rate of the event's occurrence

Poisson Distribution

Simeon D. Poisson

(1781-184

ollon

* Poisson distribution is a valid pdf for

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$
 for integer $k \ge 0$

 λ is the average rate of the event's occurrence

Expectations of Poisson Distribution

* The expected value and the variance are wonderfully the same! That is λ

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

for integer $k \geq 0$

 $E[X] = \lambda$ $var[X] = \lambda$

 $E[X] = \sum z P(z)$ X $= \sum k P(x=k)$ K e ak 90 Σ K! K=0 e-2 K-1 2 7 $= \tilde{\Sigma} k$ K=1 / (K-1)! K 7 N - 5 (K-1)! 15=1 = 7

 $Var[X] = E[X^2] - (E[X])^2$ $E[x^{2}] = \sum x^{2} p(x)$ $= \overline{2} k^2 e^{-\lambda}$ κ−2 . Я $= \sum_{k}^{\infty} (k^{2})$ e K=2 K(K-1) (1K-2)! $\lambda + \lambda$ $Var[X] = E[X] - E[X]^2 = \Lambda$

Examples of Poisson Distribution

- # How many calls does a call center get in an hour?
- How many mutations occur per 100k nucleotides in an DNA strand?
- How many independent incidents occur in an interval?

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

for integer $k \ge 0$

Poisson Distribution: call center

Q. Poisson Distribution: call center

If a call center receives 4 calls per hour on average. What is intensity λ here for an hour? A. 1 4 8 C. $\lambda = E[X]$

Credit: wikipedia

Q. Poisson Distribution: call center

Q. Poisson Distribution: call center

Given a call center receives ⋇ 10 calls per hour on average, 0.40 $\lambda = 1$ what is the intensity λ of the 0.35 distribution for calls in **Two** $\lambda = 4$ 0.30 hours? 0.25 (X = k) =0.20 0.15 X=×1+×3 0.10 0.05 0.00 $E[X_{1}] = E[X_{1}] + E[X_{3}]$ 5 10 20 15 k Credit: wikipedia

Example of a continuous random variable

* The spinner

* The sample space for all outcomes is not countable

Spinner example

(0×00)

J 00

$$\lim_{\delta \to 0} \frac{P(0.<0<0.1\delta 0)}{\delta 0} = \frac{1}{2\pi}$$

Probability density function (pdf)

- * For a continuous random variable X, the probability that X=x is essentially zero for all (or most) x, so we can't define P(X = x)
- * Instead, we define the **probability density function** (pdf) over an infinitesimally small interval dx, $p(x)dx = P(X \in [x, x + dx])$ * For a < b $p(x)dx = P(X \in [x, x + dx])$ $f(x) \in (x, x + dx])$ $f(x) \in (x, x + dx])$

Probability of continuous RU

Properties of the probability density function

p(x) resembles the probability function of discrete random variables in that $p(x) \ge 0$ for all x س * The probability of X taking all possible values is 1. $P(\mathcal{R})=1$ $\int_{-\infty}^{\infty} p(x)dx = 1$

Area under the pdf curve

Properties of the probability density function

** p(x) differs from the probability distribution function for a discrete random variable in that

p(x) is not the probability that X = x# p(x) can exceed 1 c = 2 c = 2 c = 2 c = 2 c = 2

Probability density function: spinner

* Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle θ of the spin position?

$$p(\theta) = \begin{cases} c & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

For this function to be a pdf,

Then
$$\int_{-\infty}^{\infty} p(\theta) d\theta = 1 \qquad \int_{-\infty}^{\infty} c \, d\theta = 1 \qquad c = 1$$

2π

Probability density function: spinner

* What the probability that the spin angle θ is $P(0) = \begin{cases} t_{i} & \Theta \in [0, 2i] \\ 0 & 0$ within $[\frac{\pi}{12}, \frac{\pi}{7}]?$ p(0 e[뀨, 푸]) $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} p(\theta) d\theta$ $=\int_{\Xi}^{\Xi}\frac{1}{1\pi}d\theta = ?$

Q: Probability density function: spinner

* What is the constant **c** given the spin angle θ has the following pdf?

Expectation of continuous variables

- * Expected value of a continuous random variable X $E[X] = \int_{-\infty}^{\infty} x p(x) dx$
- * Expected value of function of continuous random variable Y = f(X)

$$E[Y] = E[f(X)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

Probability density function: spinner

* Given the probability density of the spin angle θ

$$p(\theta) = \begin{cases} \frac{1}{2\pi} & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

* The expected value of spin angle is

$$E[\theta] = \int_{-\infty}^{\infty} \theta p(\theta) d\theta = \int_{0}^{2\pi} \frac{1}{2\pi} \frac{1}{$$

Properties of expectation of continuous random variables

- * The linearity of expected value is true for continuous random variables. E[X+T]
- $\sum \longrightarrow \int = \mathcal{E}[x] + \mathcal{E}[T]$ # And the other properties that we derived for variance and covariance also hold for continuous random variable $vm[x] = E[x^2] - E[x]$

Suppose a continuous variable has pdf

$$p(x) = \begin{cases} 2(1-x) & x \in [0,1] \\ 0 & otherwise \end{cases}$$

What is E[X]?

A. 1/2 B. 1/3 C. 1/4

D. 1 E. 2/3 $E[X] = \int_{-\infty}^{\infty} xp(x)dx$

Continuous uniform distribution

** A continuous random variable X is uniform if p(x)

Continuous uniform distribution

- * A continuous random variable X is uniform if $1 \qquad p(x)$
 - $p(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases} \xrightarrow{\begin{array}{c} \overline{b}-a \\ 0 \end{array}} \begin{array}{c} 1 \\ \mathbf{b}-a \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b}-a \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \xrightarrow{\begin{array}{c} 1 \\ \mathbf{b}-a \end{array}} \begin{array}{c} 1 \\ \mathbf{b} \end{array}$

 $var[x] = E[x^{\nu}] - (E[x])^{\nu}$ $= \int_{a}^{b} \frac{1}{b-a} \cdot x^{2} dx = \frac{1}{b-a} \int_{a}^{b} \frac{x}{a} dx - (E(x))^{2} + \frac{1}{b-a} \int_{a}^{b} \frac{x}{a} dx - (E(x))^{2} + \frac{1}{b-a} \int_{a}^{b} \frac{x^{2}}{a} \int_{a}^{b} \frac{x^{$

Continuous uniform distribution

 Examples: 1) A dart's position thrown on the target 2) Often associated with random sampling

Cumulative distribution of continuous uniform distribution

Cumulative distribution function (CDF) D:screte $P(X \le x) = \int_{-\infty}^{x} p(x) dx \qquad \begin{array}{c} \text{vs.} \quad P(X \le x) \\ = \sum P(X = x) \end{array}$ of a uniform random variable X is: pdf is the CDF derivative $\frac{1}{b-a} + p(x)$ of CDF₁ \mathbf{O} а Xa h

Exponential distribution

- CommonModel forwaiting time
- * Associated
 with the
 Poisson
 distribution
 with the
 same λ

Credit: wikipedia

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Os for discrete distributions

- A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know what is the probability I get 7 fuji in 20 apples? What is the distribution I should use?
- A. Bernoulli B. Binomial C. Geometric
- D. Poisson E. Uniform

A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know what is the probability I get 7 fuji in 20 apples? What is the distribution I should use? What is the probability?

- A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know the probability of picking the first gala on the 7th time (I can put back after each pick). What is the distribution I should use?
- A. Bernoulli B. Binomial C. Geometric
- D. Poisson E. Uniform

A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know the probability of picking the first gala on the 7th time (I can put back after one pick). What's the probability?

A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, what's the average times of picking to get the first gala?

See you next time

See You!

