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How many empty slots ?

Hashing N items to k slots CN>- K )
collisions are allowed , and will be

handled by linked list . What
is the

expected number of empty slots ?
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Last	time	
The classic discrete distributions

Bernoulli
1-17{ Binomial 1 I 1 I
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Geometric 1<=2
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Objectives	
�  Poisson	distribu-on	

�  Con-nuous	random	variable;	uniform	
distribu-on	

�  Exponen*al	distribu-on	

	

,
Interval ( ie . I hour)

1<=3



Motivation for Poisson Distr:c .

COVID incidences in a time

interval
,

and many other
real world

applications .



Motivation	for	a	model	called	
Poisson	Distribution		
� What’s	the	probability	of	the	number	of	
incoming	customers	(k)	in	an	hour?	

�  It’s	widely	applicable	in	physics	
	 	 	and	engineering	both	for
	 	 		modeling	of	-me	and	space.	

	

Simeon	D.	Poisson	
(1781-1840)	

Credit:	wikipedia	
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Poisson	Distribution	

�  A	discrete	random	variable	X		is	called	
Poisson	with	intensity	λ	(λ>0)	if	

	
Simeon	D.	Poisson	
(1781-1840)	

P (X = k) =
e−λλk

k!

for	integer	 k ≥ 0

λ is the average rate of
the event′s occurrence
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Poisson	Distribution	

�  Poisson	distribu-on	is	a	valid	pdf	for	

	

Simeon	D.	Poisson	
(1781-1840)	

P (X = k) =
e−λλk

k!
for	integer	 k ≥ 0

λ is the average rate of
the event′s occurrence

x	

∞∑

i=0

λi

i!
= e

λ
⇒

∞∑

k=0

λke−λ

k!
= 1

	
	
	
	
	

e-
"En "

É pcX=k) y k-I!
*

EéI = I
1<=0



Poisson	Distribution	

�  Poisson	distribu-on	is	a	valid	pdf	for	

	

Simeon	D.	Poisson	
(1781-1840)	

P (X = k) =
e−λλk
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Expectations	of	Poisson	Distribution	

�  The	expected	value	and	the	variance	are	
wonderfully	the	same!		That	is	λ		

	

Simeon	D.	Poisson	
(1781-1840)	

P (X = k) =
e−λλk

k!

for	integer	 k ≥ 0

E[X] = λ

var[X] = λ
x	
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Examples	of	Poisson	Distribution	

�  How	many	calls	does	a	call	center	get	in	an	hour?	

�  How	many	muta-ons	occur	per	100k	 	 	
	nucleo-des	in	an	DNA	strand?	

�  How	many	independent	incidents	occur	in	an	
interval?	

	

P (X = k) =
e−λλk

k!

for	integer	 k ≥ 0



Poisson	Distribution:	call	center	
�  If	a	call	center	receives	10	

calls	per	hour	on	average,	
what	is	the	probability	that	it	
receives	15	calls	in	a	given	
hour?		

�  What	is	λ	here?	

�  What	is	P(k=15)?	

Credit:	wikipedia	

The lines are only to show
the trend
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Q.	Poisson	Distribution:	call	center	

If	a	call	center	receives	4	
calls	per	hour	on	average.	

What	is	intensity	λ	here	
for	an	hour?	

A.  1	
B.  4	
C.  8	

Credit:	wikipedia	
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Q.	Poisson	Distribution:	call	center	

If	a	call	center	receives	4	
calls	per	hour	on	average.	

What	is	probability	the	
center	receives	0	calls	in	
an	hour?	

A.  e-4	
B.  0.5	
C.  0.05	

Credit:	wikipedia	
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Q.	Poisson	Distribution:	call	center	

Credit:	wikipedia	

�  Given	a	call	center	receives	
10	calls	per	hour	on	average,	
what	is	the	intensity	λ	of	the	
distribu-on	for	calls	in	Two	
hours?		
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Example	of	a	continuous	random	
variable	
� The	spinner	

� The	sample	space	for	all	outcomes	is	
not	countable	

	

0	

θ	 θ ∈ (0, 2π]
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Spinner example
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Probability	density	function	(pdf)	

�  For	a	con-nuous	random	variable	X,	the	
probability	that	X=x	is	essen-ally	zero	for	all	
(or	most)	x,	so	we	can’t	define		

�  Instead,	we	define	the	probability	density	
func*on	(pdf)	over	an	infinitesimally	small	
interval	dx, 

�  For a < b 
	

	

	

p(x)dx = P (X ∈ [x, x+ dx])∫
b

a

p(x)dx = P (X ∈ [a, b])

P (X = x)
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Probability of continuous RV
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Properties	of	the	probability	density	
function		
�  									resembles	the	probability	func-on	
of	discrete	random	variables	in	that	
�  																										for	all	x 
�  The	probability	of	X 	taking	all	possible	
values	is	1.	

	

	

p(x)

p(x) ≥ 0

∫
∞

−∞

p(x)dx = 1

per>=/



Area under the pdf curve
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Properties	of		the	probability	density	
function		
�  									differs	from	the	probability	
distribu-on	func-on	for	a	discrete	
random	variable	in	that	
�  												is	not	the	probability	that	X	=	x		
�  												can	exceed	1	
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Probability	density	function:	spinner	

�  Suppose	the	spinner	has	equal	chance	
stopping	at	any	posi-on.	What’s	the	pdf	of	the	
angle	θ	of	the	spin	posi-on?										

�  	For	this	func-on	to	be	a	pdf,	
Then		

θ 2π	

c	

0	

p(θ) =

{

c if θ ∈ (0, 2π]
0 otherwise
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Probability	density	function:	spinner	

�  What	the	probability	that	the	spin	angle	θ	is	
within	[											]?										π
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Q:	Probability	density	function:	spinner	

�  What	is	the	constant	c	given	the	spin	angle	θ	
has	the	following	pdf?	

θ 2π	0	

p(θ)

π	

c	

A.	1	
B.	1/π	
C.	2/π	
D.	4/π	
E.	1/2π	

SI pio> do
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Expectation	of	continuous	variables	

�  Expected	value	of	a	con-nuous	random	
variable	X 

 

�  Expected	value	of	func-on	of	con-nuous	
random	variable	

	

E[X] =

∫
∞

−∞

xp(x)dx

E[Y ] = E[f(X)] =

∫
∞

−∞

f(x)p(x)dx

Y = f(X)

x	

weight	



Probability	density	function:	spinner	

�  Given	the	probability	density	of	the	spin	angle	θ											

�  The	expected	value	of	spin	angle	is		

p(θ) =

{

1

2π
if θ ∈ (0, 2π]

0 otherwise

E[θ] =

∫
∞

−∞

θp(θ)dθ
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Properties	of	expectation	of	
continuous	random	variables	
�  The	linearity	of	expected	value	is	true	for	
con-nuous	random	variables. 

 

�  And	the	other	proper-es	that	we	derived	
for	variance	and	covariance	also	hold	for	
con-nuous	random	variable	
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Q.	

�  Suppose	a	con-nuous	variable	has	pdf	

	

What	is	E[X]?		

A.	1/2 			B.	1/3 				C.	1/4			 		

D.	1 					 			E.	2/3	

	

p(x) =

{

2(1− x) x ∈ [0, 1]
0 otherwise

E[X] =

∫
∞

−∞

xp(x)dx

do it on your own



Continuous	uniform	distribution	

�  A	con-nuous	random	variable	X	is	
uniform	if		

X b	0	 a	
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Continuous	uniform	distribution	

�  A	con-nuous	random	variable	X	is	
uniform	if		

p(x) =

{

1

b−a
for x ∈ [a, b]

0 otherwise

E[X] =
a+ b

2
& var[X] =

(b− a)2
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Continuous	uniform	distribution	

�  A	con-nuous	random	variable	X	is	
uniform	if		

�  Examples:	1)	A	dart’s	posi-on	thrown	on	the	
target	2)	Ojen	associated	with	random	sampling	

p(x) =

{

1

b−a
for x ∈ [a, b]

0 otherwise

E[X] =
a+ b

2
& var[X] =

(b− a)2
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1
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Cumulative	distribution	of	
continuous	uniform	distribution	
�  Cumula-ve	distribu-on	func-on	(CDF)		

	

	of	a	uniform	random	variable	X is:	 		
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1	

p(x)
1

b− a
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Exponential	distribution	

�  Common	
Model	for	
wai-ng	-me	

�  Associated	
with	the	
Poisson	
distribu-on	
with	the	
same	λ	

	

p(x) = λe−λx for x ≥ 0

Credit:	wikipedia	
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Additional	References	

�  Charles	M.	Grinstead	and	J.	Laurie	Snell	
"Introduc-on	to	Probability”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta-s-cs”	



Qs	for	discrete	distributions	



Q.	

�  A	store	staff	mixed	their	fuji										and	gala	
apples	and	they	were	individually	wrapped,	so	
they	are	indis-nguishable.	Given	there	are	
70%	of	fuji,		if	I	want	to	know	what	is	the	
probability	I	get	7	fuji	in	20	apples?	What	is	the	
distribu-on	I	should	use?	

A.	Bernoulli 			B.	Binomial 				C.	Geometric					

D.	Poisson					 			E.	Uniform	

	



Q.	

�  A	store	staff	mixed	their	fuji										and	gala	
apples	and	they	were	individually	wrapped,	so	
they	are	indis-nguishable.	Given	there	are	
70%	of	fuji,		if	I	want	to	know	what	is	the	
probability	I	get	7	fuji	in	20	apples?	What	is	the	
distribu-on	I	should	use?	What	is	the	
probability?	



Q.	

�  A	store	staff	mixed	their	fuji										and	gala	
apples	and	they	were	individually	wrapped,	so	
they	are	indis-nguishable.	Given	there	are	
70%	of	fuji,		if	I	want	to	know	the	probability	of	
picking	the	first	gala	on	the	7th	-me	(I	can	put	
back	ajer	each	pick).	What	is	the	distribu-on	I	
should	use?	

A.	Bernoulli 			B.	Binomial 				C.	Geometric					

D.	Poisson					 			E.	Uniform	

	



Q.	

�  A	store	staff	mixed	their	fuji										and	gala	
apples	and	they	were	individually	wrapped,	so	
they	are	indis-nguishable.	Given	there	are	
70%	of	fuji,		if	I	want	to	know	the	probability	of	
picking	the	first	gala	on	the	7th	-me	(I	can	put	
back	ajer	one	pick).	What’s	the	probability?	

	



Q.	

�  A	store	staff	mixed	their	fuji										and	gala	
apples	and	they	were	individually	wrapped,	so	
they	are	indis-nguishable.	Given	there	are	
70%	of	fuji,	what’s	the	average	*mes	of	
picking	to	get	the	first	gala?	



See	you	next	time	

See  
You! 


