
Solving Linear System of Equations



The “Undo” button for Linear Operations
Matrix-vector multiplication: given the data 𝒙 and the operator 𝑨, 
we can find 𝒚 such that 

𝒚 = 𝑨 𝒙

What if we know 𝒚 but not 𝒙? How can we “undo” the 
transformation?

𝒙 𝒚
𝑨

transformation

𝑨!𝟏
𝒚 𝒙

?
Solve 𝑨 𝒙 = 𝒚 for 𝒙



Image Blurring Example

• Image is stored as a 2D array of real numbers between 0 and 1 
(0 represents a white pixel, 1 represents a black pixel)

• 𝒙𝒎𝒂𝒕 has 40 rows of pixels and 100 columns of pixels
• Flatten the 2D array as a 1D array
• 𝒙 contains the 1D data with dimension 4000,
• Apply blurring operation to data 𝒙, i.e.

𝒚 = 𝑨 𝒙
where 𝑨 is the blur operator and 𝒚 is the blurred image



Blur operator

𝒚 = 𝑨 𝒙

"original” 
image 

(4000,)

blurred 
image 

(4000,)

Blur operator 
(4000,4000)

Blur operator

𝒙

𝒚

𝑨



”Undo” Blur to recover original image

Solve 
𝑨 𝒙 = 𝒚

for 𝒙

Assumptions:
1. we know the blur 

operator 𝑨
2. the data set 𝒚 does not 

have any noise (“clean 
data”  

𝒙

𝒚



”Undo” Blur to recover original image

Solve 𝑨 𝒙 = 𝒚 for 𝒙

𝒚 + 𝑎 ∗ 10!" (𝑎 ∈ 0,1 )

How much noise can we add and still be able to recover meaningful information from the original 
image? At which point this inverse transformation fails? 

We will talk about sensitivity of the “undo” operation later.

𝒚 + 𝑎 ∗ 10!# (𝑎 ∈ 0,1 )



Linear System of Equations

We can start with an “easier” system of equations…

How do we actually solve 𝑨 𝒙 = 𝒃 ?

Let’s consider triangular matrices (lower and upper):

𝐿!! 0
𝐿"! 𝐿""

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 𝐿##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏
𝑏"
⋮
𝑏#

𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏
𝑏"
⋮
𝑏#



2 0
3 2

0 0
0 0

1 2
1 3

6 0
4 2

𝑥!
𝑥"
𝑥#
𝑥$

=
2
2
6
4

Example: Forward-substitution for lower 
triangular systems

2 𝑥$ = 2 → 𝑥$= 1

3 𝑥$ + 2 𝑥% = 2 → 𝑥%=
2 − 3
2 = −0.5

1 𝑥$ + 2 𝑥% + 6 𝑥& = 6 → 𝑥&=
6 − 1 + 1

6 = 1.0

1 𝑥$ + 3 𝑥% + 4 𝑥& + 2 𝑥# = 4 → 𝑥&=
4 − 1 + 1.5 − 4

2 = 0.25 𝑥!
𝑥"
𝑥#
𝑥$

=
1

−0.5
1.0
0.25



Triangular Matrices
𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏
𝑏"
⋮
𝑏#

𝑥! 𝐔 : , 1 + 𝑥" 𝐔 : , 2 + ⋯+ 𝑥% 𝐔 : , 𝑛 = 𝒃

Hence we can write the solution as  

𝑈'' 𝑥'= 𝑏'

Recall that we can also write 𝑼 𝒙 = 𝒃 as a linear combination of the columns of 𝑼

𝑥$ 𝐔 : , 1 + ⋯+ 𝑥'!$ 𝐔 : , 𝑛 − 1 = 𝒃 −𝑥' 𝐔 : , 𝑛 → 𝑈'!$,'!$ 𝑥'!$= 𝑏'!$ − 𝑈'!$,' 𝑥'

𝑥$ 𝐔 : , 1 + ⋯+ 𝑥'!% 𝐔 : , 𝑛 − 2 = 𝒃 −𝑥' 𝐔 : , 𝑛 − 𝑥'!$ 𝐔 : , 𝑛 − 1

Or in general (backward-substitution for upper triangular systems):

𝑥&=
𝑏& − ∑'(&)!% 𝑈&'𝑥'

𝑈&&
, 𝑖 = 𝑛 − 1, 𝑛 − 2,… , 1𝑥% = 𝑏%/𝑈%%



Forward-substitution for lower-triangular systems:

𝑥&=
𝑏& − ∑'(!&*! 𝐿&'𝑥'

𝐿&&
, 𝑖 = 2,3, … , 𝑛𝑥! = 𝑏!/𝐿!!

𝐿!! 0
𝐿"! 𝐿""

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 𝐿##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏
𝑏"
⋮
𝑏#

Triangular Matrices



Cost of solving triangular systems

𝑥&=
𝑏& − ∑'(&)!% 𝑈&'𝑥'

𝑈&&
, 𝑖 = 𝑛 − 1, 𝑛 − 2,… , 1𝑥% = 𝑏%/𝑈%%

𝑛 divisions
𝑛 𝑛 − 1 /2 subtractions/additions
𝑛 𝑛 − 1 /2 multiplications

Computational complexity is 𝑂(𝑛")

𝑛 divisions
𝑛 𝑛 − 1 /2 subtractions/additions
𝑛 𝑛 − 1 /2 multiplications

Computational complexity is 𝑂(𝑛")

𝑥&=
𝑏& − ∑'(!&*! 𝐿&'𝑥'

𝐿&&
, 𝑖 = 2,3, … , 𝑛𝑥! = 𝑏!/𝐿!!



Linear System of Equations
How do we solve 𝑨 𝒙 = 𝒃 when 𝑨 is a non-triangular matrix?

We can perform LU factorization: given a 𝑛×𝑛 matrix 𝑨, 
obtain lower triangular matrix 𝑳 and upper triangular matrix 
𝑼 such that

where we set the diagonal entries of 𝑳 to be equal to 1.

𝑨 = 𝑳𝑼

1 0
𝐿"! 1

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 1

𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

=

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##



LU Factorization
1 0
𝐿"! 1

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 1

𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

=

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

𝑳𝑼 𝒙 = 𝒃

𝑳 𝒚 = 𝒃 Forward-substitution with complexity 𝑂(𝑛")

𝑼 𝒙 = 𝒚

Solve for 𝒚

Backward-substitution with complexity 𝑂(𝑛")
Solve for 𝒙

Assuming the LU factorization is know, we can solve the general system

By solving two triangular systems:

But what is the cost of the LU factorization? Is it beneficial?



2x2 LU Factorization (simple example)
𝐴!! 𝐴!"
𝐴"! 𝐴""

= 1 0
𝐿"! 1

𝑈!! 𝑈!"
0 𝑈""

𝐴!! 𝐴!"
𝐴"! 𝐴""

= 𝑈!! 𝑈!"
𝐿"!𝑈!! 𝐿"!𝑈!" + 𝑈""

2) 𝐿=> = 𝐴=>/𝑈>> 3) 𝑈== = 𝐴== − 𝐿=>𝑈>=

Seems quite simple! Can we generalize this for a 𝑛×𝑛 matrix 𝑨? 

𝑈>> = 𝐴=>/𝑈>>





LU Factorization

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

=
𝑎!! 𝒂!"
𝒂"! 𝑨"" = 1 𝟎

𝒍"! 𝑳""
𝑢!! 𝒖!"
𝟎 𝑼""

𝑎$$ 𝒂$%

𝒂%$
𝑨%%

𝑎$$: scalar
𝒂$%: row vector (1×(𝑛 − 1))
𝒂%$: column vector (𝑛 − 1)×1
𝑨%%: matrix (𝑛 − 1)×(𝑛 − 1)

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""

1) First row of 𝑼 is 
the first row of 𝑨

𝒍=> =
>
+!!
𝒂=>

3) 𝑳""𝑼"" = 𝑨"" − 𝒍"!𝒖!"
Need another factorization!

Known!

2) First column of 𝑳 is the 
first column of 𝑨/ 𝑢>>

𝑨"" = 𝒍"!𝒖!" + 𝑳""𝑼""



LU Factorization

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

=
𝑎!! 𝒂!"
𝒂"! 𝑨"" = 1 𝟎

𝒍"! 𝑳""
𝑢!! 𝒖!"
𝟎 𝑼""

𝑎$$ 𝒂$%

𝒂%$
𝑨%%

𝑎$$: scalar
𝒂$%: row vector (1×(𝑛 − 1))
𝒂%$: column vector (𝑛 − 1)×1
𝑨%%: matrix (𝑛 − 1)×(𝑛 − 1)

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""

1) First row of 𝑼 is 
the first row of 𝑨

2) 𝒍=> =
>
+!!
𝒂=>

3) 𝑴 = 𝑳""𝑼"" = 𝑨"" − 𝒍"!𝒖!"
Need another factorization!

Known!

First column of 𝑳 is the first 
column of 𝑨/ 𝑢>>



Example

𝑴 =
2 8
1 2

4 1
3 3

1 2
1 3

6 2
4 2

1) First row of 𝑼 is the first row of 𝑨
2) First column of 𝑳 is the first column of 𝑨/ 𝑢>>
3) 𝑳""𝑼"" = 𝑨"" − 𝒍"!𝒖!"



Example

𝑴 =
2 8
1 2

4 1
3 3

1 2
1 3

6 2
4 2

𝑼 =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

0 0
0 0

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

3 −1
1.5 0.25

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 0

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0.75

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 1

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

3 −1
1.5 0.75



Algorithm: LU Factorization of matrix A



Cost of LU factorization
$
"#$

%

𝑖 =
1
2
𝑚 𝑚 + 1

$
"#$

%

𝑖& =
1
6𝑚 𝑚 + 1 2𝑚 + 1

Side note:



Cost of LU factorization

Number of divisions: 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑛 𝑛 − 1 /2
Number of multiplications 𝑛 − 1 % + 𝑛 − 2 % + …+ 1 % = '!

&
− '"

%
+ '

"

Number of subtractions: 𝑛 − 1 % + 𝑛 − 2 % + …+ 1 % = '!

&
− '"

%
+ '

"

Computational complexity is 𝑂(𝑛,)

$
"#$

%

𝑖 =
1
2
𝑚 𝑚 + 1

$
"#$

%

𝑖& =
1
6𝑚 𝑚 + 1 2𝑚 + 1

Side note:

Demo “Complexity of Mat-Mat multiplication and LU”



Solving linear systems
In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix 𝑨 : 𝑨 = 𝑳𝑼 (complexity 𝑂(𝑛C))

2) Solve 𝑳 𝒚 = 𝒃 (complexity 𝑂(𝑛=))

3) Solve 𝑼 𝒙 = 𝒚 (complexity 𝑂(𝑛=))

But why should we decouple the factorization from the actual solve?
(Remember from Linear Algebra, Gaussian Elimination does not 
decouple these two steps…)



Example: Optimization of automotive 
control arm

Find the distribution of material inside the design space (𝒅) that maximizes the stiffness, i.e.,

min𝑼,𝑭 where 𝑲 𝒅 𝑼 = 𝑭 (𝑼: displacement vector, 𝑭: load vector, 𝑲: stiffness matrix)

Solve the linear system of equations
𝑲𝑼 = 𝑭

for the load vector 𝑭. What if we have many different loading conditions (pothole, hitting a 
curb, breaking, etc)? 



Iclicker question
Let’s assume that when solving the system of equations 𝑲𝑼 = 𝑭, we observe the 
following:

• When the stiffness matrix has dimensions (100,100), computing the LU factorization 
takes about 1 second and each solve (forward + backward substitution) takes about 
0.01 seconds. 

Estimate the total time it will take to find the displacement response corresponding to 
10 different load vectors 𝑭 when the stiffness matrix has dimensions (1000,1000)?

𝐴) ~10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐵) ~10" 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐶) ~10# 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐷) ~10$ 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐸) ~10- 𝑠𝑒𝑐𝑜𝑛𝑑𝑠



What can go wrong with the previous 
algorithm?

If division by zero occurs, LU factorization fails.

What can we do to get something like an LU factorization?



What can go wrong with the previous 
algorithm?

𝑴 =
2 8
1 𝟒

4 1
3 3

1 2
1 3

6 2
4 2

𝑼 =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

𝑴− 𝒍"!𝒖!" =
2 8
1 𝟎

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

𝒍"!𝒖!" =
4 2 0.5
4 2 0.5
4 2 0.5

The next update for the lower triangular matrix will result in a 
division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

Demo “Little c”



Pivoting
Approach:
1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and 

swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""

Find the largest entry (in magnitude)



LU Factorization with Partial Pivoting
• LU factorization with partial pivoting can be completed for any matrix A

Suppose you are at stage k and there is no non-zero entry on or below the diagonal in 
column k. At this point, there is nothing else you can do, so the algorithm leaves a zero 
in the diagonal entry of U. Note that the matrix U is singular, and so is the matrix A. 
Subsequent backward substitutions using U will fail, but the LU factorization itself is still 
completed.



LU Factorization with Partial Pivoting

where 𝑷 is a permutation matrix

Then solve two triangular systems:

𝑨 = 𝑷𝑳𝑼

𝑳 𝒚 = 𝑷#𝒃

𝑼 𝒙 = 𝒚

(Solve for 𝒚)

(Solve for 𝒙)

𝑨 𝒙 = 𝒃 → 𝑷𝑳𝑼 𝒙 = 𝒃 → 𝑳𝑼 𝒙 = 𝑷#𝒃



Example

𝑨 = 𝑴 =
2 8
1 2

4 1
3 3

1 2
1 3

3 2
4 2

𝑼 =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

1 1.5
2 1.5

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

0 0
0 0

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

0 −1
1.5 0.25

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −1
1 −2

1.5 0.25
0 −1

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

1.5 0.25
0 −1

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 0.5
0.5 1.0

0 0
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 0.5
0.5 1.0

1.0 0
0 1.0



Demo “Pivoting example”

𝑨 =
2 1
4 3

1 0
3 1

8 7
6 7

9 5
9 8

𝑼 =
8 7
0 0

9 5
0 0

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 0

0 0
0 0

0.25 0
0.75 0

0 0
0 0

Y𝑨 = 𝑷𝑨 =
0 0
0 1

1 0
0 0

1 0
0 0

0 0
0 1

2 1
4 3

1 0
3 1

8 7
6 7

9 5
9 8

=
8 7
4 3

9 5
3 1

2 1
6 7

1 0
9 8

D𝑨 − 𝒍%$𝒖$% =
8 7
4 −0.5

9 5
−1.5 −1.5

2 −0.75
6 1.75

−1.25 −1.25
2.25 4.25

𝒍%$𝒖$% =
3.5 4.5 2.5
1.75 2.25 1.25
5.25 6.75 3.75



Demo “Pivoting example”

𝑼 =
8 7
0 1.75

9 5
2.25 4.25

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.75 1

0 0
0 0

0.25 −0.428
0.5 −0.285

0 0
0 0

7𝑨 = 𝑷7𝑨 =
0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−1.25 −1.25
−1.5 −1.5

=
8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−1.25 −1.25
−1.5 −1.5

7𝑨 = 7𝑨 − 𝒍&$𝒖$& =
8 7
4 −0.5

9 5
−1.5 −1.5

2 −0.75
6 1.75

−1.25 −1.25
2.25 4.25

𝒍&$𝒖$& =
−0.963 −1.819
−0.6412 −1.2112

7𝑨 = 7𝑨 − 𝒍&$𝒖$& =
8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−0.287 0.569
−0.8587 −0.2887



Demo “Pivoting example”

𝑼 =
8 7
0 1.75

9 5
2.25 4.25

0 0
0 0

−0.86 −0.29
0 0

𝑳 =
1 0
0.75 1

0 0
0 0

0.5 −0.285
0.25 −0.428

1 0
0.334 0

7𝑨 = 𝑷7𝑨 =
0 0
0 0

1 0
0 1

0 1
1 0

0 0
0 0

8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−0.287 0.569
−0.8587 −0.2887

=
8 7
6 1.75

9 5
2.25 4.25

4 −0.5
2 −0.75

−0.8587 −0.2887
−0.287 0.569

7𝑨 = 7𝑨 − 𝒍&$𝒖$& =
8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−0.287 0.569
−0.8587 −0.2887

𝑼 =
8 7
0 1.75

9 5
2.25 4.25

0 0
0 0

−0.86 −0.29
0 0.67

𝑳 =
1 0
0.75 1

0 0
0 0

0.5 −0.285
0.25 −0.428

1 0
0.334 1

𝑷 =
0 0
0 0

1 0
0 1

0 1
1 0

0 0
0 0


