
Graphs and Markov chains



Graphs as matrices

0 1 2 3 4

If there is an edge 
(arrow) from node 𝑖 to 
node 𝑗, then 𝐴!" = 1 
(otherwise zero)

Adjacency 
Matrix



Matrix-vector multiplication:

𝒃 = 𝑨 𝒙 = 𝑥! 𝑨 : , 1 + 𝑥" 𝐀 : , 2 + ⋯+ 𝑥# 𝐀 : , 𝑗 + ⋯+ 𝑥$ 𝐀 : , 𝑛

Contain all the nodes that are 
reachable from node 𝑗

Hence, if we multiply 𝑨 by the 𝒖" unit vector, we  get a vector that 
indicates all the nodes that are reachable by node 𝑖. For example, 
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=
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Iclicker question

A) B) C) D)



Using graphs to represent the transition 
from one state to the next
After collecting data about the weather for many years, you observed 
that the chance of a rainy day occurring after a rainy day is 50% and that 
the chance of a rainy day after a sunny day is 10%. 

SUNNY RAINY

Sunny Rainy

Sunny

Rainy

The graph can be represented as an adjacency 
matrix, where the edge weights are the probabilities 
of weather conditions (transition matrix) 



Transition (or Markov) matrices
• Note that only the most recent state matters to determine the 

probability of the next state (in this example, the weather predictions 
for tomorrow will only depend on the weather conditions of today) –
memoryless process!

• This is called the Markov property, and the model is called a 
Markov chain

SUNNY RAINY

10% Sunny Rainy

Sunny

Rainy

50%

50%

90%



Transition (or Markov) matrices
• The transition matrix describe the transitions of a Markov chain. Each 

entry is a non-negative real number representing a probability.
• (I,J) entry of the transition matrix has the probability of transitioning 

from state J to state I.
• Columns add up to one.

SUNNY RAINY

10% Sunny Rainy

Sunny

Rainy

50%

50%

90%



Iclicker question
The weather today is sunny. What is the probability of a 
sunny day on Saturday?

A) 81%
B) 86%
C) 90%
D) 95%

http://setosa.io/ev/markov-chains/

Demo “Weather predictions”



What if I want to know the probability of days that are 
sunny in the long run?



What if I want to know the probability of days that are 
sunny in the long run?
• Initial guess for weather condition on day 1: 𝒙+
• Use the transition matrix to obtain the weather probability on the 

following days:

• Predictions for the weather on more distant days are increasingly 
inaccurate.

• What does this look like? Power iteration method!
• Power iteration method converges to steady-state vector, that gives 

the weather probabilities in the long-run.
𝒙∗ = 𝑨 𝒙∗

𝒙∗ is the eigenvector corresponding to eigenvalue 𝜆 = 1
• This “long-run equilibrium state” is reached regardless of the current 

state.

𝒙- = 𝑨 𝒙+ 𝒙. = 𝑨 𝒙- 𝒙/ = 𝑨 𝒙0…



How can we show that the largest eigenvalue of the Markov 
Matrix is one?

If 𝑨 is a Markov Matrix (only positive entries and the columns sum to one), we know that 1 is 
an eigenvalue for 𝑨, since 𝒆 = 1,1, . . , 1 is an eigenvector associated with 1.

𝑨𝒆 = 𝑨
1
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We still need to show that all the eigenvalues satisfy 𝜆 ≤ 1, if we denote (𝜆, 𝑥) an eigenpair of 
the matrix 𝑨, such that

𝜆 =
𝑨𝒙
𝒙

We will use the induced matrix norm definition:

𝑨 = max
𝒙 #𝟎

𝑨𝒙
𝒙

to write 𝜆 ≤ 𝑨 . Since 𝑨 % = 1, the we have 𝜆 ≤ 1



Another example…
Consider the following graph of states. Suppose this is a model of the 
behavior of a student at each minute of a lecture. J

Surfing 
the web

Participating in lecture (working 
on demos, answering iclickers, 
listening and asking questions)

Working 
on a HW

Exchanging 
text messages 
with friends

10%

10%

20%

50%

70%

50%

60%15%

20%
5%

20%

40%

30%



1) If the initial state is 𝒙& = 0.8,0.1,0.0,0.1 , what is the probability that the student 
will be working on the HW after one minute of the class (time step 𝑘 = 1) ?

2) What is the probability that the student will be surfing the web at after 5 minutes?
3) What is the steady-state vector for this problem?
4) Would your answer change if you were to start with a different initial guess?

𝒙 = 𝑎, 𝑏, 𝑐, 𝑑 contains the 
probabilities of a student 
performing each activity at 
each minute of the class:
𝑎 is the probability of 
participating in lecture,  
𝑏 is the probability of surfing 
the web, 
𝑐 is the probability of working 
on the HW, 
𝑑 is the probability of texting. 

Student in-class activity



1) After 5 minutes, which of the following activities will have higher probability (if 
initial state is given by is 𝒙& = 0.8,0.1,0.0,0.1 )?
A. Surfing the web
B. Working on HW
C. Texting

2) Could your answer above change if starting from a different initial state?
A. YES
B. NO

Demo “Student-Activities-During-Lecture”

Student in-class activity



Lect Web HW Text

Lec 0.6 0.4 0.2 0.3

Web 0.2 0.5 0.1 0.2

HW 0.15 0.1 0.7 0.0

Text 0.05 0.0 0.0 0.5

𝑨 =

participating in lecture

texting

surfing the web 

working on the HW 



Page Rank

Webpage 3

Webpage 2Webpage 1

Webpage 4

Problem: Consider 𝑛 linked webpages (above we have 𝑛 = 4). Rank 
them.

• A link to a page increases the perceived importance of a webpage

• We can represent the importance of each webpage 𝑘 with the scalar 𝑥E



Page Rank

Webpage 3

Webpage 2Webpage 1

Webpage 4

A possible way to rank webpages…
• 𝑥E is the number of links to page 𝑘 (incoming links)
• 𝑥- = 2, 𝑥. = 1, 𝑥F = 3, 𝑥0 = 2
• Issue: when looking at the links to webpage 1, the link from webpage 3 

will have the same weight as the link from webpage 4. Therefore, links 
from important pages like “The NY Times” will have the same weight as 
other less important pages, such as “News-Gazette”.



Page Rank
Another way… Let’s think of Page Rank as an stochastic process. 

http://infolab.stanford.edu/~backrub/google.html

“PageRank can be thought of as a model of user behavior. We assume there 
is a random surfer who is given a web page at random and keeps clicking 
on links, never hitting “back”…”

So the importance of a web page can be determined by the probability of a 
random user to end up on that page. 



Page Rank
Let us write this graph problem 
(representing webpage links) as a matrix 
(adjacency matrix). 

0 1 2 3 4 5

2 2 3 1 1 1

Number of outgoing links for each webpage 𝑗



Page Rank
• The influence of each page is split 

evenly between the pages it links to 
(i.e., equal weights for each outgoing 
link)

• Therefore, we should divide each row 
entry by the total column sum

0 1 2 3 4 5

0 1 1

1 0

1 0

1 1 0

1 0

1 1 1 0

0 1 2 3 4 5

0 1.0 1.0

0.5 0

0.5 0

0.5 0.33 0

0.33 0

0.5 0.33 1.0 0



Page Rank
Note that the sum of each column is equal 
to 1. This is the Markov matrix!

0 1.0 1.0

0.5 0

0.5 0

0.5 0.33 0

0.33 0

0.5 0.33 1.0 0

𝑨 =

We want to know the probability of a user to end up in each one of the 
above 6 webpages, when starting at random from one of them.

Suppose that we start with the following probability at time step 0:
𝒙+ = (0.1,0.2,0.1,0.3,0.1,0.2)

What is the probability that the user will be at “webpage 3” at time step 1?



𝑨 =

0
0.5
0
0
0
0.5

0
0
0.5
0.5
0
0

0
0
0

0.33
0.33
0.33

1.0
0
0
0
0
0

0
0
0
0
0
1.0

1.0
0
0
0
0
0

𝒙& =

0.1
0.2
0.1
0.3
0.1
0.2

𝒙% = 𝑨 𝒙& =

0.5
0.05
0.1
0.133
0.033
0.184

The user will have a probability of about 13% to 
be at “webpage 3” at time step 1.

At steady-state, what is the most likely page the user will end up at, when 
starting from a random page?

Perform 𝒙H = 𝑨 𝒙HI- until convergence!

Page Rank



The plot below shows the probabilities of a user 
ending up at each webpage for each time step.

0

1

2
3

4

5

The most “important” page is the one with the highest probability. Hence, the 
ranking for these 6 webpages would be (starting from the most important):
Webpages 0,5,1,3,2,4

Page Rank



0 1 2 3 4 5

0 1

1 0

1 0

1 1 0

1 0

1 1 1 0

Note that we can no longer 
divide the entries of the last 
column by the total column 
sum, which in this case is zero 
(no outgoing links).

What if we now remove the link 
from webpage 5 to webpage 0?



0 1 2 3 4 5

0 1

1 0

1 0

1 1 0

1 0

1 1 1 0

0 1 2 3 4 5

0 1.0 0.166

0.5 0 0.166

0.5 0 0.166

0.5 0.33 0 0.166

0.33 0 0.166

0.5 0.33 1.0 0.166

Approach: Since a random user 
will not stay on the same webpage 
forever, we can assume that all the 
other webpages have the same 
probability to be linked from 
“webpage 5”.



Page Rank
𝑨 =
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The plot below shows the probabilities 
of a user ending up at each webpage for 
each time step.

The most “important” page is the one with the highest probability. Hence, the 
ranking for these 6 webpages would be (starting from the most important):
Webpages 5,0,3,1,2,4
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Page Rank
One remaining issue: the Markov matrix does not guarantee a unique solution

𝑨 =

0
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Matrix A has two eigenvectors corresponding to the same eigenvalue 1 

𝒙∗ =

0.33
0.33
0.33
0
0

𝒙∗ =

0
0
0
1
1

Perron-Frobenius theorem (CIRCA 1910):
If 𝑨 is a Markov matrix with all positive 
entries, then M has unique steady-state 
vector 𝒙∗.



Page Rank

Brin-Page (1990s) proposed: “PageRank can be thought of as a model of user 
behavior. We assume there is a random surfer who is given a web page at random 
and keeps clicking on links, never hitting “back”, but eventually gets bored and 
starts on another random page.”

So a surfer clicks on a link on the current page with probability 0.85 and opens a 
random page with probability 0.15. 

This model makes all entries of 𝐌 greater than zero, and guarantees a unique 
solution.

𝑴 = 0.85 𝑨 +
0.15
𝑛
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𝑴 = 0.85 𝑨 +
0.15
𝑛

Page Rank



Iclicker question
For the Page Rank problem, we have to compute 

𝑴 = 0.85 𝑨 +
0.15
𝑛

And then perform a matrix-vector multiplications 𝒙H= 𝑴 𝒙HI-

What is the cost of the matrix-vector multiplication 𝒃 𝒙HI-?

A) 𝑂 1
B) 𝑂 𝑛
C) 𝑂 𝑛.
D) 𝑂 𝑛F


