An m×n real matrix A has a singular value decomposition of the form
A=UΣVTwhere
where s=min(m,n) and σ1≥σ2⋯≥σs≥0 are the square roots of the eigenvalues values of ATA. The diagonal entries are called the singular values of A.
Note that if ATx≠0, then ATA and AAT both have the same eigenvalues:
AATx=λx(left-multiply both sides by AT)
ATAATx=ATλx ATA(ATx)=λ(ATx)The time-complexity for computing the SVD factorization of an arbitrary m×n matrix is proportional to m2n+n3, where the constant of proportionality ranges from 4 to 10 (or more) depending on the algorithm.
In general, we can define the cost as:
O(m2n+n3)The SVD factorization of a non-square matrix A of size m×n can be represented in a reduced format:
The following figure depicts the reduced SVD factorization (in red) against the full SVD factorizations (in gray).
In general, we will represent the reduced SVD as:
A=URΣRVTRwhere UR is a m×s matrix, VR is a n×s matrix, ΣR is a s×s matrix, and s=min(m,n).
We begin with the following non-square matrix, A
and we will compute the reduced form of the SVD (where here s=3):
(1) Compute ATA:
ATA=[174158106158197134106134127](2) Compute the eigenvectors and eigenvalues of ATA:
\lambda_1 = 437.479, \quad \lambda_2 = 42.6444, \quad \lambda_3 = 17.8766, \\ \boldsymbol{v}_1 = \begin{bmatrix} 0.585051 \\ 0.652648 \\ 0.481418\end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} -0.710399 \\ 0.126068 \\ 0.692415 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 0.391212 \\ -0.747098 \\ 0.537398 \end{bmatrix}(3) Construct {\bf V}_R from the eigenvectors of {\bf A}^T {\bf A}:
(4) Construct {\bf \Sigma}_R from the square roots of the eigenvalues of {\bf A}^T {\bf A}:
(5) Find {\bf U} by solving {\bf U}{\bf\Sigma} = {\bf A}{\bf V}. For our reduced case, we can find {\bf U}_R = {\bf A}{\bf V}_R {\bf \Sigma}_R^{-1}. You could also find {\bf U} by computing the eigenvectors of {\bf AA}^T.
{\bf U} = \overbrace{\left[ \begin{array}{ccc} 3 & 2 & 3 \\ 8 & 8 & 2 \\ 8 & 7 & 4 \\ 1 & 8 & 7 \\ 6 & 4 & 7 \\ \end{array} \right]}^{A} \overbrace{\left[ \begin{array}{ccc} 0.585051 & -0.710399 & 0.391212 \\ 0.652648 & 0.126068 & -0.747098 \\ 0.481418 & 0.692415 & 0.537398 \\ \end{array} \right]}^{V} \overbrace{\left[ \begin{array}{ccc} 0.047810 & 0.0 & 0.0 \\ 0.0 & 0.153133 & 0.0 \\ 0.0 & 0.0 & 0.236515 \\ \end{array} \right]}^{\Sigma^{-1}} {\bf U} = \left[ \begin{array}{ccc} 0.215371 & 0.030348 & 0.305490 \\ 0.519432 & -0.503779 & -0.419173 \\ 0.534262 & -0.311021 & 0.011730 \\ 0.438715 & 0.787878 & -0.431352\\ 0.453759 & 0.166729 & 0.738082\\ \end{array} \right]We obtain the following singular value decomposition for {\bf A}:
Recall that we computed the reduced SVD factorization (i.e. {\bf \Sigma} is square, {\bf U} is non-square) here.
Suppose {\bf A} is a m \times n matrix where m > n (without loss of generality):
{\bf A}= {\bf U\Sigma V}^{T} = \begin{bmatrix}\vert & & \vert & & \vert \\ \vert & & \vert & & \vert \\ {\bf u}_1 & \cdots & {\bf u}_n & \cdots & {\bf u}_m\\ \vert & & \vert & & \vert \\\vert & & \vert & & \vert \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \\ & \vdots & \\ -& 0& -\end{bmatrix} \begin{bmatrix} - & {\bf v}_1^T & - \\ & \vdots & \\ - & {\bf v}_n^T & - \end{bmatrix}We can re-write the above as:
{\bf A} = \begin{bmatrix}\vert & & \vert \\ \vert & & \vert \\ {\bf u}_1 & \cdots & {\bf u}_n \\ \vert & & \vert \\ \vert & & \vert \end{bmatrix} \begin{bmatrix} - & \sigma_1 {\bf v}_1^T & - \\ & \vdots & \\ - & \sigma_n{\bf v}_n^T & - \end{bmatrix}Furthermore, the product of two matrices can be written as a sum of outer products:
{\bf A} = \sigma_1 {\bf u}_1 {\bf v}_1^T + \sigma_2 {\bf u}_2 {\bf v}_2^T + ... + \sigma_n {\bf u}_n {\bf v}_n^TFor a general rectangular matrix, we have:
{\bf A} = \sum_{i=1}^{s} \sigma_i {\bf u}_i {\bf v}_i^Twhere s = \min(m,n).
If {\bf A} has s non-zero singular values, the matrix is full rank, i.e. \text{rank}({\bf A}) = s.
If {\bf A} has r non-zero singular values, and r < s, the matrix is rank deficient, i.e. \text{rank}({\bf A}) = r.
In other words, the rank of {\bf A} equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in {\bf \Sigma}.
Rounding errors may lead to small but non-zero singular values in a rank deficient matrix. Singular values that are smaller than a given tolerance are assumed to be numerically equivalent to zero, defining what is sometimes called the effective rank.
The right-singular vectors (columns of {\bf V}) corresponding to vanishing singular values of {\bf A} span the null space of {\bf A}, i.e. null({\bf A}) = span{{\bf v}_{r+1}, {\bf v}_{r+2}, …, {\bf v}_{n}}.
The left-singular vectors (columns of {\bf U}) corresponding to the non-zero singular values of {\bf A} span the range of {\bf A}, i.e. range({\bf A}) = span{{\bf u}_{1}, {\bf u}_{2}, …, {\bf u}_{r}}.
The rank of {\bf A} is 2.
The vectors \left[ \begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{array} \right] and \left[ \begin{array}{c} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{array} \right] provide an orthonormal basis for the range of {\bf A}.
The vector \left[ \begin{array}{c} 0 \\ 0\\ 1 \end{array} \right] provides an orthonormal basis for the null space of {\bf A}.
If the matrix {\bf \Sigma} is rank deficient, we cannot get its inverse. We define instead the pseudoinverse:
({\bf \Sigma}^+)_{ii} = \begin{cases} \frac{1}{\sigma_i} & \sigma_i \neq 0\\ 0 & \sigma_i = 0 \end{cases}For a general non-square matrix {\bf A} with known SVD ({\bf A} = {\bf U\Sigma V}^T), the pseudoinverse is defined as:
{\bf A}^{+} = {\bf V\Sigma}^{+}{\bf U}^TFor example, if we consider a m \times n full rank matrix where m > n:
{\bf A}^{+}= \begin{bmatrix} \vert & ... & \vert \\ {\bf v}_1 & ... & {\bf v}_n\\ \vert & ... & \vert \end{bmatrix} \begin{bmatrix} 1/\sigma_1 & & & 0 & \dots & 0 \\ & \ddots & & & \ddots &\\ & & 1/\sigma_n & 0 & \dots & 0 \\ \end{bmatrix} \begin{bmatrix}\vert & & \vert & & \vert \\ \vert & & \vert & & \vert \\ {\bf u}_1 & \cdots & {\bf u}_n & \cdots & {\bf u}_m\\ \vert & & \vert & & \vert \\\vert & & \vert & & \vert \end{bmatrix}^TThe induced 2-norm of a matrix {\bf A} can be obtained using the SVD of the matrix :
\begin{align} \| {\bf A} \|_2 &= \max_{\|\mathbf{x}\|=1} \|\mathbf{A x}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{U \Sigma V}^T {\bf x}\| \\ & =\max_{\|\mathbf{x}\|=1} \|\mathbf{ \Sigma V}^T {\bf x}\| = \max_{\|\mathbf{V}^T{\bf x}\|=1} \|\mathbf{ \Sigma V}^T {\bf x}\| =\max_{\|y\|=1} \|\mathbf{ \Sigma} y\| \end{align}And hence,
\| {\bf A} \|_2= \sigma_1In the above equations, all the notations for the norm \| . \| refer to the p=2 Euclidean norm, and we used the fact that {\bf U} and {\bf V} are orthogonal matrices and hence \|{\bf U}\|_2 = \|{\bf V}\|_2 = 1.
We begin with the following non-square matrix {\bf A}:
{\bf A} = \left[ \begin{array}{ccc} 3 & 2 & 3 \\ 8 & 8 & 2 \\ 8 & 7 & 4 \\ 1 & 8 & 7 \\ 6 & 4 & 7 \\ \end{array} \right].The matrix of singular values, {\bf \Sigma}, computed from the SVD factorization is:
Consequently the 2-norm of {\bf A} is
Following the same derivation as above, we can show that for a full rank n \times n matrix we have:
\| {\bf A}^{-1} \|_2= \frac{1}{\sigma_n}where {\sigma_n} is the smallest singular value.
For non-square matrices, we can use the definition of the pseudoinverse (regardless of the rank):
\| {\bf A}^{+} \|_2= \frac{1}{\sigma_r}where {\sigma_r} is the smallest non-zero singular value. Note that for a full rank square matrix, we have \| {\bf A}^{+} \|_2 = \| {\bf A}^{-1} \|_2. An exception of the definition above is the zero matrix. In this case, \| {\bf A}^{+} \|_2 = 0
The 2-norm condition number of a matrix {\bf A} is given by the ratio of its largest singular value to its smallest singular value:
\text{cond}_2(A) = \|{\bf A}\|_2 \|{\bf A}^{-1}\|_2 = \sigma_{\max}/\sigma_{\min}.If the matrix {\bf A} is rank deficient, i.e. \text{rank}({\bf A}) < \min(m,n), then \text{cond}_2({\bf A}) = \infty.
The best rank-k approximation for a m \times n matrix {\bf A}, where k < s = \min(m,n), for some matrix norm \|.\|, is one that minimizes the following problem:
\begin{aligned} &\min_{ {\bf A}_k } \ \|{\bf A} - {\bf A}_k\| \\ &\textrm{such that} \quad \mathrm{rank}({\bf A}_k) \le k. \end{aligned}Under the induced 2-norm, the best rank-k approximation is given by the sum of the first k outer products of the left and right singular vectors scaled by the corresponding singular value (where, \sigma_1 \ge \dots \ge \sigma_s):
{\bf A}_k = \sigma_1 \bf{u}_1 \bf{v}_1^T + \dots \sigma_k \bf{u}_k \bf{v}_k^TObserve that the norm of the difference between the best approximation and the matrix under the induced 2-norm condition is the magnitude of the (k+1)^\text{th} singular value of the matrix:
\|{\bf A} - {\bf A}_k\|_2 = \left|\left|\sum_{i=k+1}^n \sigma_i \bf{u}_i \bf{v}_i^T\right|\right|_2 = \sigma_{k+1}Note that the best rank-{k} approximation to {\bf A} can be stored efficiently by only storing the {k} singular values {\sigma_1,\dots,\sigma_k}, the {k} left singular vectors {\bf u_1,\dots,\bf u_k}, and the {k} right singular vectors {\bf v_1,\dots, \bf v_k}.
The figure below show best rank-k approximations of an image (you can find the code snippet that generates these images in the IPython notebook):