Loading [MathJax]/jax/output/CommonHTML/jax.js

Sparse Matrices


Dense Matrices

A n×n matrix is called dense if it has O(n2) non-zero entries. For example:

A=[1.02.03.04.05.06.07.08.09.0].

To store the matrix, all components are saved in row-major order. For A given above, we would store:

AA=[1.02.03.04.05.06.07.08.09.0].

The dimensions of the matrix are stored separately.

Sparse Matrices

A n×n matrix is called sparse if it has O(n) non-zero entries. For example:

A=[1.0002.003.04.005.006.007.08.09.00010.011.00000012.0].

COO (Coordinate Format) stores arrays of row indices, column indices and the corresponding non-zero data values in any order. This format provides fast methods to construct sparse matrices and convert to different sparse formats. For A the COO format is:

data=[12.09.07.05.01.02.011.03.06.04.08.010.0] row=[422100312123],col=[442303300132]

CSR (Compressed Sparse Row) encodes rows offsets, column indices and the corresponding non-zero data values. This format provides fast arithmetic operations between sparse matrices, and fast matrix vector product. The row offsets are defined by the followign recursive relationship (starting with rowptr[0]=0):

rowptr[j]=rowptr[j1]+nnz(rowj1),

where nnz(rowk) is the number of non-zero elements in the kth row. Note that the length of rowptr is nrows+1, where the last element in rowptr is the number of nonzeros in A. For A the CSR format is:

data=[1.02.03.04.05.06.07.08.09.010.011.012.0] col=[030130234234] rowptr=[02591112]

CSR Matrix Vector Product Algorithm

The following code snippet performs CSR matrix vector product for square matrices:

import numpy as np
def csr_mat_vec(A, x):
  Ax = np.zeros_like(x)
  for i in range(x.shape[0]):
    for k in range(A.rowptr[i], A.rowptr[i+1]):
      Ax[i] += A.data[k]*x[A.col[k]]
  return Ax

Review Questions