Singular Value Decomposition (applications)

1) Determining the rank of a matrix

Suppose \boldsymbol{A} is a $m \times n$ rectangular matrix where $m>n$:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\begin{array}{ccccc}
\vdots & \ldots & \vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} & \ldots & \boldsymbol{u}_{m} \\
\vdots & \ldots & \vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & 0 \\
& & \\
\boldsymbol{A} & =\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{cccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
\ldots & \sigma_{n} \mathbf{v}_{n}^{T} & \ldots
\end{array}\right)
\end{aligned}
$$

Rank of a matrix

For general rectangular matrix \boldsymbol{A} with dimensions $m \times n$, the reduced SVD is:

$$
A=U_{R} \Sigma_{R} V_{R}{ }^{T}
$$

Rank of a matrix

- The rank of \mathbf{A} equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in $\boldsymbol{\Sigma}$.
- Rounding errors may lead to small but non-zero singular values in a rank deficient matrix, hence the rank of a matrix determined by the number of non-zero singular values is sometimes called "effective rank".
- The right-singular vectors (columns of \boldsymbol{V}) corresponding to vanishing singular values span the null space of \mathbf{A}.
- The left-singular vectors (columns of \boldsymbol{U}) corresponding to the non-zero singular values of \mathbf{A} span the range of \mathbf{A}.

2) Pseudo-inverse

- Problem: if \mathbf{A} is rank-deficient, $\boldsymbol{\Sigma}$ is not be invertible
- How to fix it: Define the Pseudo Inverse
- Pseudo-Inverse of a diagonal matrix:

$$
\left(\Sigma^{+}\right)_{i}= \begin{cases}\frac{1}{\sigma_{i}}, & \text { if } \sigma_{i} \neq 0 \\ 0, & \text { if } \sigma_{i}=0\end{cases}
$$

- Pseudo-Inverse of a matrix \boldsymbol{A} :

$$
A^{+}=V \Sigma^{+} \boldsymbol{U}^{\boldsymbol{T}}
$$

3) Matrix norms

The Euclidean norm of an orthogonal matrix is equal to 1

$$
\|\boldsymbol{U}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{U} \boldsymbol{x}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1} \sqrt{(\boldsymbol{U} \boldsymbol{x})^{T}(\boldsymbol{U} \boldsymbol{x})}=\max _{\|\boldsymbol{x}\|_{2}=1} \sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}=\max _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{x}\|_{2}=1
$$

The Euclidean norm of a matrix is given by the largest singular value

$$
\begin{aligned}
\|\boldsymbol{A}\|_{2} & =\max _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2} \\
& =\max _{\left\|\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=1}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{y}\|_{2}=1}\|\boldsymbol{\Sigma} \boldsymbol{y}\|_{2}
\end{aligned}
$$

Where we used the fact that $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$. Since $\boldsymbol{\Sigma}$ is diagonal we get:

$$
\|\boldsymbol{A}\|_{2}=\max \left(\sigma_{i}\right)=\sigma_{\max } \quad \sigma_{\max } \text { is the largest singular value }
$$

4) Norm for the inverse of a matrix

The Euclidean norm of the inverse of a square-matrix is given by:
Assume here \boldsymbol{A} is full rank, so that \boldsymbol{A}^{-1} exists
$\left\|\boldsymbol{A}^{-1}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{x}\right\|_{2}$
$\left\|\boldsymbol{A}^{-1}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V} \boldsymbol{\Sigma}^{\boldsymbol{- 1}} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}$
Since $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$ and $\boldsymbol{\Sigma}$ is diagonal then
$\left\|\boldsymbol{A}^{-1}\right\|_{2}=\frac{1}{\sigma_{\min }} \quad \sigma_{\min }$ is the smallest singular value

5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a $m \times n$ matrix is:

$$
\boldsymbol{A}^{+}=V \Sigma^{+} \boldsymbol{U}^{\boldsymbol{T}}
$$

$$
\left\|\boldsymbol{A}^{+}\right\|_{2}=\frac{1}{\sigma_{r}}
$$

where σ_{r} is the smallest non-zero singular value. This is valid for any matrix, regardless of the shape or rank.

Note that for a full rank square matrix, $\left\|\boldsymbol{A}^{+}\right\|_{2}$ is the same as $\left\|\boldsymbol{A}^{-1}\right\|_{2}$.
Zero matrix: If \boldsymbol{A} is a zero matrix, then \boldsymbol{A}^{+}is also the zero matrix, and $\left\|\boldsymbol{A}^{+}\right\|_{2}=0$

6) Condition number of a matrix

The condition number of a matrix is given by

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{+}\right\|_{2}
$$

If the matrix is full rank: $\operatorname{rank}(\boldsymbol{A})=\min (m, n)$

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\frac{\sigma_{\max }}{\sigma_{\min }}
$$

where $\sigma_{\max }$ is the largest singular value and $\sigma_{\min }$ is the smallest singular value

If the matrix is rank deficient: $\operatorname{rank}(\boldsymbol{A})<\min (m, n)$

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\infty
$$

7) Low-Rank Approximation

We will again use the SVD to write the matrix A as a sum of outer products (of left and right singular vectors) - here for $m>n$ without loss of generality:

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{m} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & 0 \\
& & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \sigma_{1} \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \sigma_{n} \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& =\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{n} \mathbf{u}_{n} \mathbf{v}_{n}^{T}
\end{aligned}
$$

7) Low-Rank Approximation (cont.)

The best rank- \boldsymbol{k} approximation for a $m \times n$ matrix \boldsymbol{A}, (where $k \leq \min (m, n)$) is the one that minimizes the following problem:

$$
\begin{aligned}
& \min _{A_{k}}\left\|A-A_{k}\right\| \\
& \text { such that } \quad \operatorname{rank}\left(A_{k}\right) \leq k .
\end{aligned}
$$

When using the induced 2-norm, the best rank- \boldsymbol{k} approximation is given by:

$$
\begin{gathered}
\boldsymbol{A}_{k}=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \mathbf{v}_{k}^{T} \\
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots \geq 0
\end{gathered}
$$

Note that $\operatorname{rank}(\boldsymbol{A})=n$ and $\operatorname{rank}\left(\boldsymbol{A}_{k}\right)=k$ and the norm of the difference between the matrix and its approximation is

Example: Image compression

Image using rank-50 approximation

8) Using SVD to solve square system of linear equations

If \boldsymbol{A} is a $n \times n$ square matrix and we want to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can use the SVD for \boldsymbol{A} such that

