
Solving Linear Least Squares with 
SVD



𝑨 is a 𝑚×𝑛 matrix where  𝑚 > 𝑛
(more points to fit than coefficient to be determined)

Normal Equations: 𝑨!𝑨 𝒙 = 𝑨! 𝒃

• The solution 𝑨 𝒙 ≅ 𝒃 is unique if and only if 𝑟𝑎𝑛𝑘 𝐀 = 𝑛
(𝑨 is full column rank)

• 𝑟𝑎𝑛𝑘 𝐀 = 𝑛 → columns of 𝑨 are linearly independent → 𝑛 non-zero 
singular values → 𝑨! 𝑨 has only positive eigenvalues → 𝑨!𝑨 is a symmetric
and positive definite matrix → 𝑨!𝑨 is invertible

𝒙 = 𝑨!𝑨 "𝟏𝑨! 𝒃

• If 𝑟𝑎𝑛𝑘 𝐀 < 𝑛, then 𝑨 is rank-deficient, and solution of linear least squares 
problem is not unique.

What we have learned so far…



SVD to solve linear least squares 
problems

We want to find the least square solution of 𝑨 𝒙 ≅ 𝒃, where 𝑨 = 𝑼 𝚺 𝑽𝑻

or better expressed in reduced form: 𝑨 = 𝑼" 𝚺𝑹 𝑽𝑻

𝑨 =
⋮ … ⋮
𝒖! … 𝒖"
⋮ … ⋮

𝜎!
⋱

𝜎#
0
⋮
0

… 𝐯!$ …
⋮ ⋮ ⋮
… 𝐯#$ …

𝑨 is a𝑚×𝑛 rectangular matrix where 𝑚 > 𝑛, and hence the SVD 
decomposition is given by:



Recall Reduced SVD

𝑨 = 𝑼0 𝚺𝑹 𝑽𝑻

𝑚×𝑛 𝑚×𝑛
𝑛×𝑛

𝑛×𝑛

𝑚 > 𝑛





SVD to solve linear least squares 
problems

𝑨 =
⋮ … ⋮
𝒖- … 𝒖.
⋮ … ⋮

𝜎-
⋱

𝜎.

… 𝐯-/ …
⋮ ⋮ ⋮
… 𝐯./ …

𝑨 = 𝑼0 𝚺𝑹 𝑽𝑻











Consider solving the least squares problem 𝑨 𝒙 ≅ 𝒃, where the singular value decomposition of 
the matrix 𝑨 = 𝑼 𝚺 𝑽𝑻𝒙 is:

Determine 𝒃 − 𝑨 𝒙 &

Example:





Example
Suppose you have 𝑨 = 𝑼 𝚺 𝑽𝑻𝒙 calculated. What is the cost of solving

min
𝒙

𝒃 − 𝑨 𝒙 7
7 ?

A) 𝑂(𝑛)
B) 𝑂( 𝑛7)
C) 𝑂(𝑚𝑛)
D) 𝑂 𝑚
E) 𝑂( 𝑚7)


