Singular Value Decomposition (matrix factorization)

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

 $A = U \Sigma V^T$

where \boldsymbol{U} is a $m \times m$ orthogonal matrix, \boldsymbol{V}^{T} is a $n \times n$ orthogonal matrix and $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix.

$$\sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$$

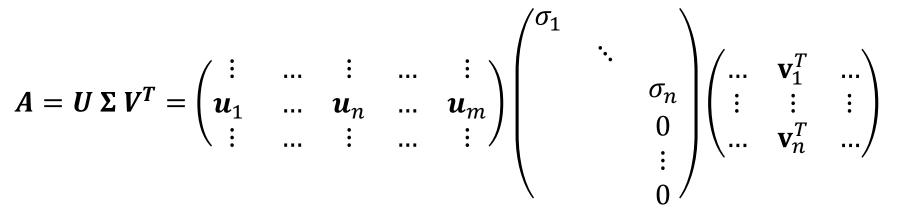
For a square matrix
$$(\boldsymbol{m} = \boldsymbol{n})$$
:

$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{v}_1 & \dots & \boldsymbol{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}^T$$

Reduced SVD

What happens when \boldsymbol{A} is not a square matrix?

1) m > n



 $m \times m$

 $m \times n$

 $n \times n$

Reduced SVD

2) n > m

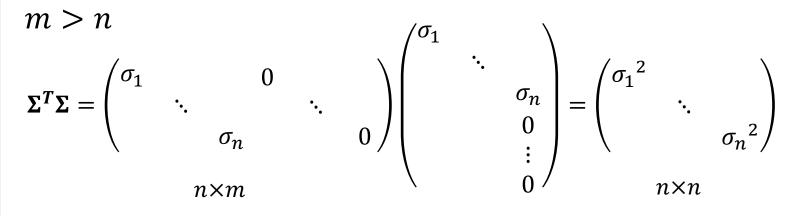
 $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_{1} & \dots & \boldsymbol{u}_{m} \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_{1} & & 0 & & \\ & \ddots & & \ddots & \\ & & \sigma_{m} & & 0 \end{pmatrix} \begin{pmatrix} \dots & \boldsymbol{v}_{1}^{T} & \dots \\ \vdots & \vdots & \vdots \\ \dots & \boldsymbol{v}_{m}^{T} & \dots \\ \vdots & \vdots & \vdots \\ \dots & \boldsymbol{v}_{n}^{T} & \dots \end{pmatrix}$

 $n \times m$

 $m \times n$

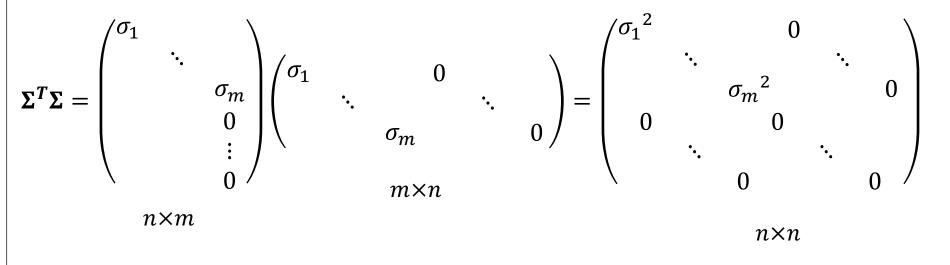
 $n \times n$

Let's take a look at the product $\Sigma^T \Sigma$, where Σ has the singular values of a A, a $m \times n$ matrix.



 $m \times n$

n > m



Assume **A** with the singular value decomposition $A = U \Sigma V^T$. Let's take a look at the eigenpairs corresponding to $A^T A$:

In a similar way,

How can we compute an SVD of a matrix A?

- 1. Evaluate the *n* eigenvectors \mathbf{v}_i and eigenvalues λ_i of $\mathbf{A}^T \mathbf{A}$
- 2. Make a matrix V from the normalized vectors v_i . The columns are called "right singular vectors".

$$V = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and} \quad \sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$$

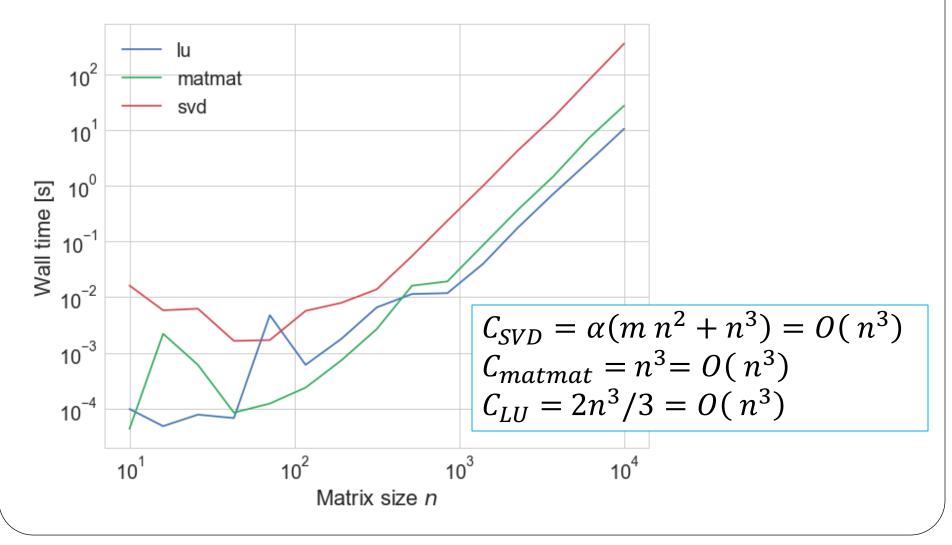
4. Find $U: A = U \Sigma V^T \implies U \Sigma = A V$. The columns are called the "left singular vectors".

Singular values are always non-negative

- A matrix is positive definite if $x^T B x > 0$ for $\forall x \neq 0$
- A matrix is positive semi-definite if $x^T B x \ge 0$ for $\forall x \neq 0$

Cost of SVD

The cost of an SVD is proportional to $m n^2 + n^3$ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.



SVD summary:

- The SVD is a factorization of a $m \times n$ matrix into $A = U \Sigma V^T$ where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.
- In reduced form: $A = U_R \Sigma_R V_R^T$, where U_R is a $m \times k$ matrix, Σ_R is a $k \times k$ matrix, and V_R is a $n \times k$ matrix, and $k = \min(m, n)$.
- The columns of V are the eigenvectors of the matrix $A^T A$, denoted the right singular vectors.
- The columns of U are the eigenvectors of the matrix AA^T , denoted the left singular vectors.
- The diagonal entries of Σ^2 are the eigenvalues of $A^T A$. $\sigma_i = \sqrt{\lambda_i}$ are called the singular values.
- The singular values are always non-negative (since $A^T A$ is a positive semi-definite matrix, the eigenvalues are always $\lambda \ge 0$)