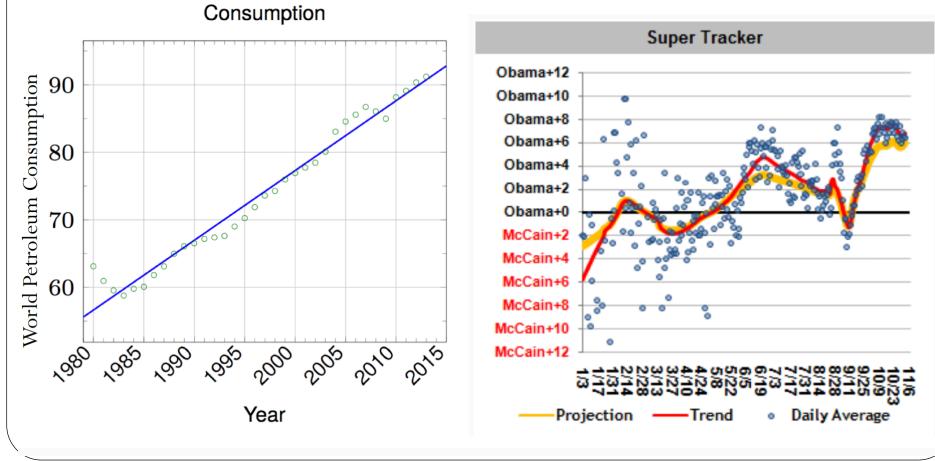
Least Squares and Data Fitting

Data fitting

How do we best fit a set of data points?

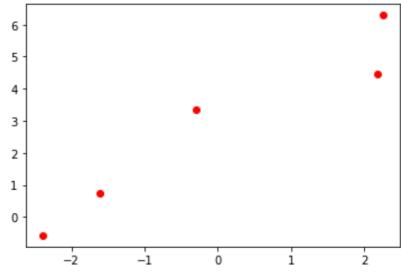


Linear Least Squares 1) Fitting with a line

Given m data points $\{\{t_1, y_1\}, \dots, \{t_m, y_m\}\}$, we want to find the function $y = x_o + x_1 t$

that best fit the data (or better, we want to find the coefficients x_0, x_1).

Thinking geometrically, we can think "what is the line that most nearly passes through all the points?"



Given m data points $\{\{t_1, y_1\}, \dots, \{t_m, y_m\}\}\$, we want to find x_o and x_1 such that

$$y_i = x_o + x_1 t_i \qquad \forall i \in [1, m]$$

Given m data points $\{\{t_1, y_1\}, \dots, \{t_m, y_m\}\}$, we want to find x_o and x_1 such that

$$y_i = x_o + x_1 t_i \qquad \forall i \in [1, m]$$

or in matrix form:

$$\begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \quad \boldsymbol{A} \ \boldsymbol{x} = \boldsymbol{b}$$

$$\boldsymbol{m} \times \boldsymbol{n} \ \boldsymbol{n} \times \boldsymbol{1} \quad \boldsymbol{m} \times \boldsymbol{1}$$

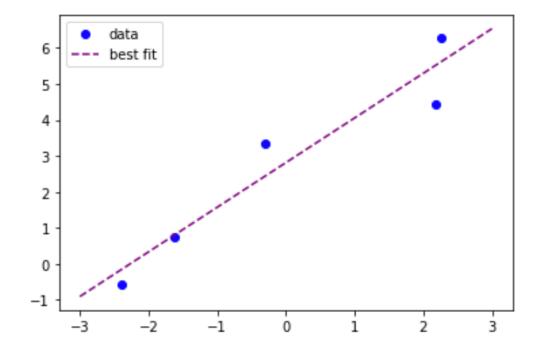
Note that this system of linear equations has more equations than unknowns – OVERDETERMINED SYSTEMS

We want to find the appropriate linear combination of the columns of \boldsymbol{A} that makes up the vector \boldsymbol{b} .

If a solution exists that satisfies A = b then $b \in range(A)$

Linear Least Squares

In most cases, b ∉ range(A) and A x = b does not have an exact solution!

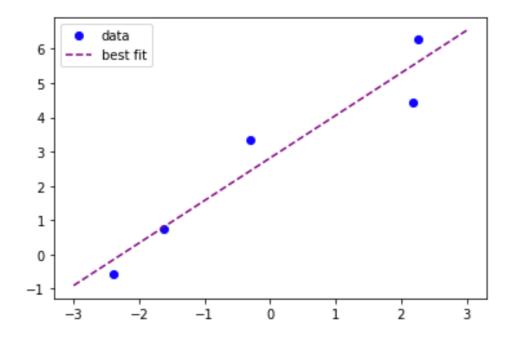


• Therefore, an overdetermined system is better expressed as $A \; x \cong b$

Linear Least Squares

• Least Squares: find the solution **x** that minimizes the residual

$$r=b-Ax$$



• Let's define the function ϕ as the square of the 2-norm of the residual

$$\phi(\boldsymbol{x}) = \|\boldsymbol{b} - \boldsymbol{A}\,\boldsymbol{x}\|_2^2$$

Linear Least Squares

• **Least Squares**: find the solution *x* that minimizes the residual

r=b-Ax

• Let's define the function ϕ as the square of the 2-norm of the residual

$$\phi(\boldsymbol{x}) = \|\boldsymbol{b} - \boldsymbol{A}\,\boldsymbol{x}\|_2^2$$

- Then the least squares problem becomes $\min_{x} \phi(x)$
- Suppose $\phi: \mathcal{R}^m \to \mathcal{R}$ is a smooth function, then $\phi(\mathbf{x})$ reaches a (local) maximum or minimum at a point $\mathbf{x}^* \in \mathcal{R}^m$ only if

 $\nabla\phi(\boldsymbol{x}^*)=0$

How to find the minimizer?

• To minimize the 2-norm of the residual vector

$$\min_{x} \phi(x) = \| \boldsymbol{b} - \boldsymbol{A} \, x \|_{2}^{2} = (\boldsymbol{b} - \boldsymbol{A} \, x)^{T} (\boldsymbol{b} - \boldsymbol{A} \, x)$$

Linear Least Squares (another approach)

- Find y = A x which is closest to the vector b
- What is the vector $y = A \ x \in range(A)$ that is closest to vector y in the Euclidean norm?

Summary:

- **A** is a $m \times n$ matrix, where m > n.
- *m* is the number of data pair points. *n* is the number of parameters of the "best fit" function.
- Linear Least Squares problem $A \ x \cong b$ always has solution.
- The Linear Least Squares solution \boldsymbol{x} minimizes the square of the 2-norm of the residual:

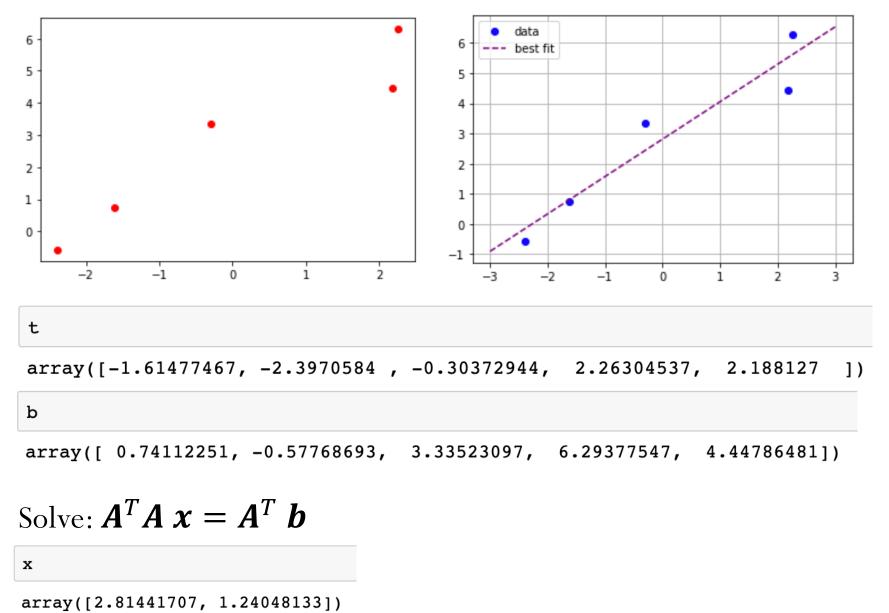
$$\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A} \mathbf{x}\|_2^2$$

 One method to solve the minimization problem is to solve the system of Normal Equations

$$A^T A x = A^T b$$

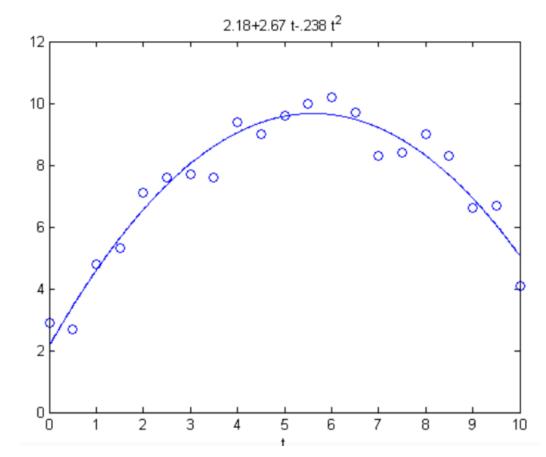
• Let's see some examples and discuss the limitations of this method.

Example:



Data fitting - not always a line fit!

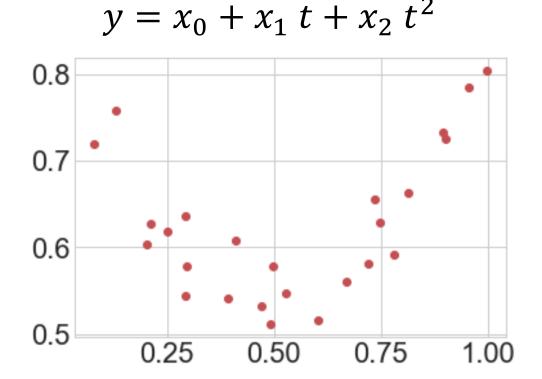
• Does not need to be a line! For example, here we are fitting the data using a quadratic curve.



Linear Least Squares: The problem is linear in its coefficients!

Another example

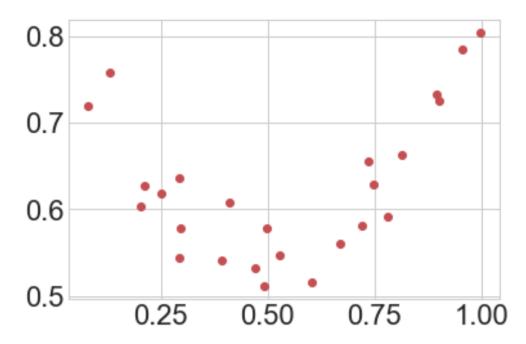
We want to find the coefficients of the quadratic function that best fits the data points:



We would not want our "fit" curve to pass through the data points exactly as we are looking to model the general trend and not capture the noise.

Data fitting

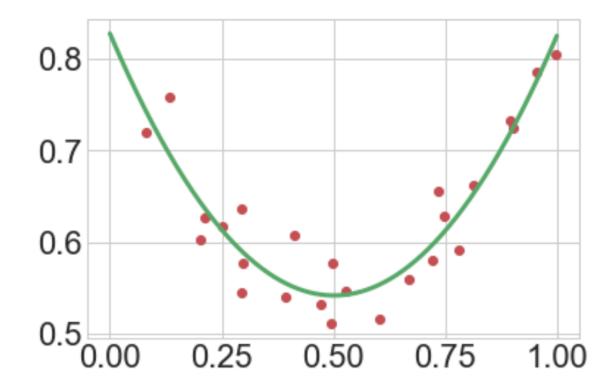
 $y = x_0 + x_1 t + x_2 t^2$



Data fitting

 $\begin{bmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_m & t_m^2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$

Solve: $A^T A x = A^T b$



Which function is not suitable for linear least squares?

A)
$$y = a + b x + c x^{2} + d x^{3}$$

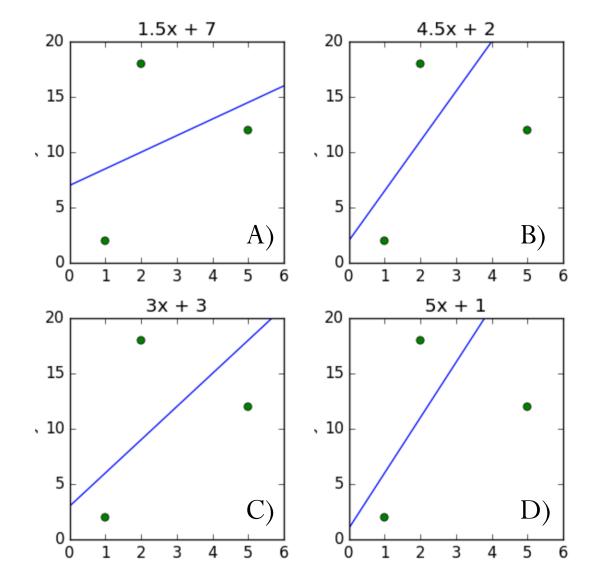
B) $y = x(a + b x + c x^{2} + d x^{3})$
C) $y = a \sin(x) + b/\cos(x)$
D) $y = a \sin(x) + x/\cos(bx)$
E) $y = a e^{-2x} + b e^{2x}$

Computational Cost

$$A^T A x = A^T b$$

Short questions

Given the data in the table below, which of the plots shows the line of best fit in terms of least squares?



Short questions

Given the data in the table below, and the least squares model

 $y = c_1 + c_2 \sin(t\pi) + c_3 \sin(t\pi/2) + c_4 \sin(t\pi/4)$

written in matrix form as	$A \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \cong \mathbf{y}$	t _i	Уi
	$\begin{bmatrix} c_3\\ c_4 \end{bmatrix}$	0.5	0.72
determine the entry A_{23} of the matrix A . Note that indices start with 1. A) -1.0 B) 1.0 C) - 0.7 D) 0.7 E) 0.0		1.0	0.79
		1.5	0.72
		2.0	0.97
		2.5	1.03
		3.0	0.96
		3.5	1.00