Unconstrained Optimization ND

What is the optimal solution? (ND)

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{x} f(\boldsymbol{x})
$$

(First-order) Necessary condition
1D: $f^{\prime}(x)=0$
(Second-order) Sufficient condition
1D: $f^{\prime \prime}(x)>0$

Taking derivatives...

From linear algebra:

A symmetric $n \times n$ matrix \boldsymbol{H} is positive definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y}>\mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} is positive semi-definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y} \geq \mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} is negative definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y}<\mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} is negative semi-definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y} \leq \mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} that is not negative semi-definite and not positive semidefinite is called indefinite

$$
f\left(\boldsymbol{x}^{*}\right)=\min f(\boldsymbol{x})
$$

First order necessary condition: $\stackrel{\boldsymbol{\nabla}}{\boldsymbol{x}}(\boldsymbol{x})=\mathbf{0}$
Second order sufficient condition: $\boldsymbol{H}(\boldsymbol{x})$ is positive definite How can we find out if the Hessian is positive definite?

Types of optimization problems

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

f : nonlinear, continuous and smooth

Gradient-free methods
Evaluate $f(\boldsymbol{x})$
Gradient (first-derivative) methods Evaluate $f(\boldsymbol{x}), \boldsymbol{\nabla} f(\boldsymbol{x})$

Second-derivative methods
Evaluate $f(\boldsymbol{x}), \nabla f(\boldsymbol{x}), \nabla^{2} f(\boldsymbol{x})$

Example (ND)

Consider the function $f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+4 x_{2}^{2}+2 x_{2}-24 x_{1}$ Find the stationary point and check the sufficient condition

Optimization in ND:
 Steepest Descent Method

Given a function
$f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$ at a point \boldsymbol{x}, the function will decrease its value in the direction of steepest descent: $-\boldsymbol{\nabla} f(\boldsymbol{x})$

What is the steepest descent direction?

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Start with initial guess:

$$
x_{0}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

Check the update:

Steepest Descent Method

Update the variable with:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)
$$

How far along the gradient should we go? What is the "best size" for α_{k} ?

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Evaluate: $\boldsymbol{s}_{\boldsymbol{k}}=-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$

Perform a line search to obtain α_{k} (for example, Golden Section Search)

$$
\alpha_{k}=\operatorname{argmin} f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}\right)
$$

Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{s}_{k}$

Line Search

Example

Consider minimizing the function

$$
f\left(x_{1}, x_{2}\right)=10\left(x_{1}\right)^{3}-\left(x_{2}\right)^{2}+x_{1}-1
$$

Given the initial guess

$$
x_{1}=2, x_{2}=2
$$

what is the direction of the first step of gradient descent?

Newton's Method

Using Taylor Expansion, we build the approximation:

Newton's Method

Algorithm:

Initial guess: $\boldsymbol{x}_{\mathbf{0}}$
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{\boldsymbol{k}}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{\boldsymbol{k}}$

Note that the Hessian is related to the curvature and therefore contains the information about how large the step should be.

Try this out!

$$
f(x, y)=0.5 x^{2}+2.5 y^{2}
$$

When using the Newton's Method to find the minimizer of this function, estimate the number of iterations it would take for convergence?
A) 1
B) 2-5
C) 5-10
D) More than 10
E) Depends on the initial guess

Newton's Method Summary

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{\boldsymbol{k}+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{\boldsymbol{k}}$

About the method...

- Typical quadratic convergence $)$
- Need second derivatives $*$
- Local convergence (start guess close to solution)
- Works poorly when Hessian is nearly indefinite
- Cost per iteration: $O\left(n^{3}\right)$

