
Unconstrained Optimization ND



What is the optimal solution? (ND)

(First-order) Necessary condition 

(Second-order) Sufficient condition

1D:  𝑓!! 𝑥 > 0

1D:  𝑓′ 𝑥 = 0

𝑓 𝒙∗ = min
𝒙
𝑓 𝒙



Taking derivatives…



From linear algebra:

A symmetric 𝑛 ×𝑛 matrix 𝑯 is positive definite if 𝒚𝑻𝑯 𝒚 > 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 is positive semi-definite if 𝒚𝑻𝑯 𝒚 ≥ 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 is negative definite if 𝒚𝑻𝑯 𝒚 < 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 is negative semi-definite if 𝒚𝑻𝑯 𝒚 ≤ 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 that is not negative semi-definite and not positive semi-
definite is called indefinite



𝑓 𝒙∗ = min
𝒙
𝑓 𝒙

First order necessary condition: 𝜵𝑓 𝒙 = 𝟎
Second order sufficient condition: 𝑯 𝒙 is positive definite
How can we find out if the Hessian is positive definite?



Types of optimization problems

Gradient-free methods

Gradient (first-derivative) methods

Evaluate 𝑓 𝒙 , 𝜵𝑓 𝒙 , 𝜵𝟐𝑓 𝒙

Second-derivative methods

𝑓 𝒙∗ = min
𝒙
𝑓 𝒙

Evaluate 𝑓 𝒙

Evaluate 𝑓 𝒙 , 𝜵𝑓 𝒙

𝑓: nonlinear, continuous 
and smooth



Consider the function 𝑓 𝑥-, 𝑥. = 2𝑥-/ + 4𝑥.. + 2𝑥. − 24𝑥-
Find the stationary point and check the sufficient condition

Example (ND)



Optimization in ND: 
Steepest Descent Method 
Given a function 
𝑓 𝒙 :ℛ% → ℛ at a point 
𝒙, the function will decrease 
its value in the direction of 
steepest descent: −𝜵𝑓 𝒙

𝑓 𝑥-, 𝑥. = (𝑥- − 1)𝟐+(𝑥. − 1)𝟐

What is the steepest descent 
direction?



Steepest Descent Method 

𝑓 𝑥-, 𝑥. = (𝑥- − 1)𝟐+(𝑥. − 1)𝟐
Start with initial guess:

𝒙1 =
3
3

Check the update:



Steepest Descent Method 

𝑓 𝑥-, 𝑥. = (𝑥- − 1)𝟐+(𝑥. − 1)𝟐
Update the variable with: 
𝒙23- = 𝒙2 − 𝛼2𝜵𝑓 𝒙2

How far along the gradient 
should we go? What is the “best 
size” for 𝛼2?





Steepest Descent Method 
Algorithm:

Initial guess: 𝒙&

Evaluate: 𝒔'= −𝜵𝑓 𝒙'

Perform a line search to obtain 𝛼' (for example, Golden Section 
Search)

𝛼' = argmin
(

𝑓 𝒙' + 𝛼 𝒔'

Update: 𝒙')* = 𝒙' + 𝛼' 𝒔'



Line Search



Example
Consider minimizing the function

𝑓 𝑥!, 𝑥" = 10(𝑥!)# − 𝑥" " + 𝑥! − 1

Given the initial guess
𝑥! = 2, 𝑥"= 2

what is the direction of the first step of gradient descent?



Newton’s Method 
Using Taylor Expansion, we build the approximation:



Newton’s Method
Algorithm:
Initial guess: 𝒙&

Solve:𝑯𝒇 𝒙' 𝒔' = −𝜵𝑓 𝒙'
Update: 𝒙')* = 𝒙' + 𝒔'

Note that the Hessian is related to the curvature and therefore contains the 
information about how large the step should be.



Try this out!
𝑓 𝑥, 𝑦 = 0.5𝑥. + 2.5𝑦.

When using the Newton’s Method to find the minimizer of this 
function, estimate the number of iterations it would take for 
convergence?

A) 1     B) 2-5     C) 5-10    D) More than 10    E) Depends on the initial guess



Newton’s Method Summary
Algorithm:
Initial guess: 𝒙&
Solve:𝑯𝒇 𝒙' 𝒔' = −𝜵𝑓 𝒙'
Update: 𝒙')* = 𝒙' + 𝒔'

About the method…
• Typical quadratic convergence J
• Need second derivatives L
• Local convergence (start guess close to solution)
• Works poorly when Hessian is nearly indefinite
• Cost per iteration: 𝑂(𝑛,)


