Optimization (Introduction)
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Optimization

Goal: Find the minimizer X that minimizes the objective (cost
J

function f(x): R" - R

Unconstrained Optimization
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Unconstrained Optimization

* What if we are looking for a maximizer xX*?

f(x") = max f (x)




g Calculus problem: maximize the rectangle
area subject to perimeter constraint

dene fldy,da) = dy x dy

such that gldy,dy) =2(dy +dy) —20 <0
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Unconstrained Optimization 1D
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What 1s the optimal solution? (1D)
f(x™) = min f(x)

(First-order) Necessary condition

(Second—order) Sufficient condition
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Types of optimization problems

f ( X *) — mx!n f ( x) f: nonlinear, continuous

and smooth

Gradient-free methods

Evaluate f(x)

Gradient (ﬁrst-derivative) methods

Evaluate f(x), ' (x)

Second-derivative methods

Evaluate f(x), f'(x), f"'(x)
\
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Does the solution exists? Local or global
solution?
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Example (1D)

4 x3

Consider the function f (x) = xT -5

point and check the sufficient condition

™~

11 x?% + 40x. Find the stationary
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Optimization in 1D:
Golden Section Search

e  Similar idea of bisection method for root finding
* Needs to bracket the minimum inside an interval

* Required the function to be unimodal
A function f: R — R is unimodal on an interval [a, D]

V' There is a unique X* € [a, b] such that f(x*) is the minimum in
[a, b]
v' For any X1, X5 € [a, b] with x; < x;

" X <X = f(x1) > fx2)
" X > x> f(x) < fx)
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Golden Section Search
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e
Golden Section Search

What happens with the length of the interval after one iteration?
hl =T hO
Or in general: Ryg4q = T hy

Hence the interval gets reduced by T

(for bisection method to solve nonlinear equations, T=0.5)

For recursion:
thi=0—-1)h,
tth, =(1—1)h,
2=(1-1)
T=0.618
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Golden Section Search

* Derivative free method!
* Slow convergence:

o |ex+1]
lim

= 0.618 r =1 (linear convergence)

o Only one function evaluation per iteration
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Example

Consider running golden section search on a function that is unimodal. If golden
section search is started with an initial brakcet of [—10, 10|, what is the length
of the new bracket after 1 iteration?
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Newton’s Method

Using Taylor Expansion, we can approximate the function f with a quadratic

function about X

fG) = f(xo) + £ (o) (x — x0) + £ (x0) (x — x0)?

And we want to find the minimum of the quadratic function using the

first-order necessary condition




e
Newton’s Method

* Algorithm:
Xo = starting guess

X1 = X — () /f (x)

* Convergence:
* 'Typical quadratic convergence
* Local convergence (start guess close to solution)
* May fail to converge, or converge to a maximum or

point of inflection
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Newton’s Method (Graphical Representation)
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Example

Consider the function f(x) = 4 x3+2x%*+5x+40

If we use the initial guess Xy = 2, what would be the value of X after one

iteration of the Newton’s method?




