Optimization (Introduction)

Optimization

Goal: Find the **minimizer** x^* that minimizes the **objective (cost)** function $f(x): \mathbb{R}^n \to \mathbb{R}$

Unconstrained Optimization

Optimization

Goal: Find the **minimizer** x^* that minimizes the **objective (cost)** function $f(x): \mathbb{R}^n \to \mathbb{R}$

Constrained Optimization

Unconstrained Optimization

• What if we are looking for a maximizer *x**?

$$f(\boldsymbol{x}^*) = \max_{\boldsymbol{x}} f(\boldsymbol{x})$$

Calculus problem: maximize the rectangle area subject to perimeter constraint

$\max_{d \in \mathcal{R}^2}$	$f(d_1, d_2) = d_1 \times d_2$
such that	$g(d_1, d_2) = 2(d_1 + d_2) - 20 \le 0$

$$Perimeter = 2(d_1 + d_2)$$

Unconstrained Optimization 1D

What is the optimal solution? (1D)

$$f(x^*) = \min_x f(x)$$

(First-order) Necessary condition

(Second-order) Sufficient condition

Types of optimization problems

$$f(x^*) = \min_x f(x)$$

f: nonlinear, continuous and smooth

Gradient-free methods

Evaluate f(x)

Gradient (first-derivative) methods

Evaluate f(x), f'(x)

Second-derivative methods

Evaluate f(x), f'(x), f''(x)

Does the solution exists? Local or global solution?

Example (1D)

Consider the function $f(x) = \frac{x^4}{4} - \frac{x^3}{3} - 11 x^2 + 40x$. Find the stationary point and check the sufficient condition

Optimization in 1D: Golden Section Search

- Similar idea of bisection method for root finding
- Needs to bracket the minimum inside an interval
- Required the function to be unimodal

A function $f: \mathcal{R} \to \mathcal{R}$ is unimodal on an interval [a, b]

- ✓ There is a unique $x^* \in [a, b]$ such that $f(x^*)$ is the minimum in [a, b]
- ✓ For any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$

•
$$x_2 < \mathbf{x}^* \Longrightarrow f(x_1) > f(x_2)$$

• $x_1 > \mathbf{x}^* \Longrightarrow f(x_1) < f(x_2)$

Golden Section Search

What happens with the length of the interval after one iteration?

$$h_1 = \tau h_o$$

Or in general: $h_{k+1} = \tau h_k$

Hence the interval gets reduced by au

(for bisection method to solve nonlinear equations, $\tau=0.5$)

For recursion:

$$\tau h_{1} = (1 - \tau) h_{o}$$

$$\tau \tau h_{o} = (1 - \tau) h_{o}$$

$$\tau^{2} = (1 - \tau)$$

$$\tau = 0.618$$

Golden Section Search

- Derivative free method!
- Slow convergence:

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|} = 0.618 \quad r = 1 \ (linear \ convergence)$$

• Only one function evaluation per iteration

Example

Consider running golden section search on a function that is unimodal. If golden section search is started with an initial braket of [-10, 10], what is the length of the new bracket after 1 iteration?

A) 20
B) 10
C) 12.36
D) 7.64

Newton's Method

Using Taylor Expansion, we can approximate the function f with a quadratic function about x_0

$$f(x) \approx f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2} f''(x_0) (x - x_0)^2$$

And we want to find the minimum of the quadratic function using the first-order necessary condition

Newton's Method

- Algorithm:
- $x_0 =$ starting guess

 $x_{k+1} = x_k - f'(x_k) / f''(x_k)$

• Convergence:

- Typical quadratic convergence
- Local convergence (start guess close to solution)
- May fail to converge, or converge to a maximum or point of inflection

Newton's Method (Graphical Representation)

Example

Consider the function $f(x) = 4 x^3 + 2 x^2 + 5 x + 40$

If we use the initial guess $x_0 = 2$, what would be the value of x after one iteration of the Newton's method?