
Finite Difference Method



Motivation
For a given smooth function 𝑓 𝑥 , we want to calculate the derivative 𝑓′ 𝑥 at 
a given value of 𝑥.

Suppose we don’t know how to compute the analytical expression for 𝑓′ 𝑥 , 
or it is computationally very expensive. However you do know how to evaluate 
the function value:

We know that:

𝑓′ 𝑥 = lim
!→#

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Can we just use 𝑓′ 𝑥 ≈ ! "#$ %! "
$

as an approximation? How do we choose ℎ? 
Can we get estimate the error of our approximation?



For a differentiable function 𝑓:ℛ → ℛ, the derivative is defined as:

𝑓′ 𝑥 = lim
!→#

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Taylor Series centered at 𝑥, where 𝑥̅ = 𝑥 + ℎ

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓$ 𝑥 ℎ + 𝑓′′ 𝑥 !!

% +𝑓′′′ 𝑥
!"

& +⋯

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓$ 𝑥 ℎ + 𝑂(ℎ%)

We define the Forward Finite Difference as:

Therefore, the truncation error of the forward finite difference approximation is bounded by:

Finite difference method



In a similar way, we can write:

𝑓 𝑥 − ℎ = 𝑓 𝑥 − 𝑓! 𝑥 ℎ + 𝑂(ℎ") → 𝑓! 𝑥 =
𝑓 𝑥 − 𝑓 𝑥 − ℎ

ℎ
+ 𝑂(ℎ)

And define the Backward Finite Difference as:

𝑑𝑓 𝑥 =
𝑓 𝑥 − 𝑓 𝑥 − ℎ

ℎ → 𝑓! 𝑥 = 𝑑𝑓 𝑥 + 𝑂(ℎ)

And subtracting  the two Taylor approximations

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓! 𝑥 ℎ + 𝑓′′ 𝑥 #!

"
+𝑓′′′ 𝑥 #"

$
+⋯

𝑓 𝑥 − ℎ = 𝑓 𝑥 − 𝑓! 𝑥 ℎ + 𝑓′′ 𝑥 #!

"
−𝑓′′′ 𝑥 #"

$
+⋯

𝑓 𝑥 + ℎ − 𝑓 𝑥 − ℎ = 2𝑓! 𝑥 ℎ + 𝑓′′′ 𝑥
ℎ%

6 + 𝑂(ℎ&)

𝑓! 𝑥 =
𝑓 𝑥 + ℎ − 𝑓 𝑥 − ℎ

2ℎ
+ 𝑂(ℎ")

And define the Central Finite Difference as:

𝑑𝑓 𝑥 =
𝑥 + ℎ − 𝑓 𝑥 − ℎ

2ℎ → 𝑓! 𝑥 = 𝑑𝑓 𝑥 + 𝑂(ℎ")



Forward Finite Difference:

𝑑𝑓 𝑥 = ' ()# *' (
#

→ 𝑓! 𝑥 = 𝑑𝑓 𝑥 + 𝑂(ℎ)

Backward Finite Difference:

𝑑𝑓 𝑥 = ' ( *' (*#
#

→ 𝑓! 𝑥 = 𝑑𝑓 𝑥 + 𝑂(ℎ)

Central Finite Difference:

𝑑𝑓 𝑥 = ' ()# *' (*#
"#

→ 𝑓! 𝑥 = 𝑑𝑓 𝑥 + 𝑂(ℎ")

How accurate is the finite difference approximation? How many function 
evaluations (in additional to 𝑓 𝑥 )?

Our typical trade-off issue! We can get better accuracy with Central Finite Difference with 
the (possible) increased computational cost.

How small should the value of  𝒉? 

Truncation error: 𝑂(ℎ)
Cost: 1 function evaluation

Truncation error: 𝑂(ℎ)
Cost: 1 function evaluation

Truncation error: 𝑂(ℎ")
Cost: 2 function evaluation2



Example

𝑓 𝑥 = 𝑒$ − 2

𝑓′ 𝑥 = 𝑒$

𝑑𝑓𝑎𝑝𝑝𝑟𝑜𝑥 =
(𝑒$%!−2) − (𝑒$−2)

ℎ

𝑒𝑟𝑟𝑜𝑟(ℎ) = 𝑎𝑏𝑠(𝑓′ 𝑥 − 𝑑𝑓𝑎𝑝𝑝𝑟𝑜𝑥)

We want to obtain an approximation for 𝑓′ 1

ℎ 𝑒𝑟𝑟𝑜𝑟

Truncation error



Example

Should we just keep decreasing the perturbation ℎ, in order to approach the limit ℎ → 0 and 
obtain a better approximation for the derivative? 



Uh-Oh!

What happened here?

𝑓 𝑥 = 𝑒$ − 2, 𝑓′ 𝑥 = 𝑒$ → 𝑓′ 1 ≈ 2.7

𝑑𝑓 1 =
𝑓 1 + ℎ − 𝑓(1)

ℎ

Forward Finite Difference



𝑑𝑓(𝑥) =
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ ≤
𝜖+ |𝑓 𝑥 |

ℎ

When computing the finite difference approximation, we have two competing source of 
errors: Truncation errors and Rounding errors



Optimal “h”

Loss of accuracy 
due to rounding

𝑒𝑟𝑟𝑜𝑟~𝑀 ℎTruncation error:

Rounding error: 𝑒𝑟𝑟𝑜𝑟~
𝜖&|𝑓 𝑥 |

ℎ

Minimize the total error

𝑒𝑟𝑟𝑜𝑟 ~
𝜖+|𝑓 𝑥 |

ℎ + 𝑀ℎ
Gives

ℎ = 𝜖+|𝑓 𝑥 |/𝑀




