
Eigenvalues and Eigenvectors



Power Iteration
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Assume that 𝛼" ≠ 0, the term 𝛼"𝒖" dominates the others when 𝑘 is 
very large.

Since |𝜆" > |𝜆# , we have 
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!
≪ 1 when 𝑘 is large  

Hence, as 𝑘 increases, 𝒙! converges to a multiple of the first 
eigenvector 𝒖", i.e., 



How can we now get the eigenvalues?

If 𝒙 is an eigenvector of 𝑨 such that

𝑨 𝒙 = 𝜆 𝒙

then how can we evaluate the corresponding eigenvalue 𝜆? 



Power Iteration



Normalized Power Iteration

𝒙𝟎 = arbitrary nonzero vector

𝒙𝟎 =
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for		𝑘 = 1,2, …
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Normalized Power Iteration
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What if the starting vector 𝒙𝟎 have no component in the dominant eigenvector 𝒖" (𝛼" = 0)?  



Normalized Power Iteration
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What if the first two largest eigenvalues (in magnitude) are the same, |𝜆" = |𝜆# ? 

1) 𝜆" and 𝜆# both positives



Normalized Power Iteration
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What if the first two largest eigenvalues (in magnitude) are the same, |𝜆" = |𝜆# ? 

2) 𝜆" and 𝜆# both negative



Normalized Power Iteration

𝒙! = 𝜆" ! 𝛼"𝒖" + 𝛼#
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What if the first two largest eigenvalues (in magnitude) are the same, |𝜆" = |𝜆# ? 

3) 𝜆" and 𝜆# opposite signs



Potential pitfalls
1. Starting vector 𝒙𝟎 may have no component in the dominant eigenvector 𝒖" (𝛼" =

0). This is usually unlikely to happen if 𝒙𝟎 is chosen randomly, and in practice not a 
problem because rounding will usually introduce such component.

2. Risk of eventual overflow (or underflow): in practice the approximated eigenvector is 
normalized at each iteration (Normalized Power Iteration)

3. First two largest eigenvalues (in magnitude) may be the same: |𝜆"| = |𝜆#|. In this 
case, power iteration will give a vector that is a linear combination of the 
corresponding eigenvectors:
• If signs are the same, the method will converge to correct magnitude of the 

eigenvalue. If the signs are different, the method will not converge.
• This is a “real” problem that cannot be discounted in practice.



Error
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Convergence and error



Example



Suppose 𝒙 is an eigenvector of 𝑨 such that

𝑨 𝒙 = 𝜆 𝒙

What is an eigenvalue of 𝑨'"?



Inverse Power Method
Previously we learned that we can use the Power Method to obtain the 
largest eigenvalue and corresponding eigenvector, by using the update

𝒙!6" = 𝑨 𝒙!
Suppose there is a single smallest eigenvalue of 𝑨. With the previous 
ordering

|𝜆"| > |𝜆#| ≥ |𝜆7| ≥ ⋯ > |𝜆$|



Think about this question…
Which code snippet is the best option to compute the smallest eigenvalue of 
the matrix 𝑨?

A) B)

D)

E)  I have no idea! 

C)



Inverse Power Method



Cost of computing eigenvalues using 
inverse power iteration



Suppose 𝒙 is an eigenvector of 𝑨 such that 𝑨 𝒙 = 𝜆𝟏 𝒙 and also 𝒙 is an 
eigenvector of 𝑩 such that 𝑩 𝒙 = 𝜆𝟐 𝒙. What is an eigenvalue of  

What is an eigenvalue of (𝑨 + 𝟏
𝟐
𝑩)'"?



Suppose 𝒙 is an eigenvector of 𝑨 such that 𝑨 𝒙 = 𝜆𝟏 𝒙 and also 𝒙 is an 
eigenvector of 𝑩 such that 𝑩 𝒙 = 𝜆𝟐 𝒙. What is an eigenvalue of  

What is an eigenvalue of 𝑨# + 𝜎𝑩?



Eigenvalues of a Shifted Inverse Matrix
Suppose the eigenpairs 𝒙, 𝜆 satisfy 𝑨𝒙 = 𝜆 𝒙.



Eigenvalues of a Shifted Inverse Matrix



Convergence summary
Method Cost Convergence 

𝒆𝒌'𝟏 / 𝒆𝒌

Power Method 𝒙!"# = 𝑨 𝒙! 𝑘 𝑛$
𝜆$
𝜆#

Inverse Power 
Method 𝑨 𝒙!"# = 𝒙!

𝑛% + 𝑘 𝑛$ 𝜆&
𝜆&'#

Shifted Inverse 
Power Method (𝑨 − 𝜎𝑰)𝒙!"#= 𝒙! 𝑛% + 𝑘 𝑛$

𝜆( − 𝜎
𝜆($ − 𝜎

𝜆": largest eigenvalue (in magnitude)
𝜆#: second largest eigenvalue (in magnitude)
𝜆$: smallest eigenvalue (in magnitude)
𝜆$)": second smallest eigenvalue (in magnitude)
𝜆*: closest eigenvalue to 𝜎
𝜆*#: second closest eigenvalue to 𝜎


