Eigenvalues and Eigenvectors

Eigenvalue problem

Let \boldsymbol{A} be an $n \times n$ matrix:
$\boldsymbol{x} \neq \mathbf{0}$ is an eigenvector of \boldsymbol{A} if there exists a scalar λ such that

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

where λ is called an eigenvalue.
If \boldsymbol{x} is an eigenvector, then $\boldsymbol{\alpha} \boldsymbol{x}$ is also an eigenvector. Therefore, we will usually seek for normalized eigenvectors, so that

$$
\|x\|=1
$$

Note: When using Python, numpy.linalg.eig will normalize using $p=2$ norm.

How do we find eigenvalues?

Linear algebra approach:
$\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$
$(A-\lambda I) x=0$
Therefore the matrix $(\boldsymbol{A}-\lambda \boldsymbol{I})$ is singular $\Rightarrow \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$
$p(\lambda)=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})$ is the characteristic polynomial of degree n.

In most cases, there is no analytical formula for the eigenvalues of a matrix (Abel proved in 1824 that there can be no formula for the roots of a polynomial of degree 5 or higher) \Rightarrow Approximate the eigenvalues numerically!

Example

$$
\boldsymbol{A}=\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \quad \operatorname{det}\left(\begin{array}{cc}
2-\lambda & 1 \\
4 & 2-\lambda
\end{array}\right)=0
$$

Diagonalizable Matrices

A $n \times n$ matrix \boldsymbol{A} with n linearly independent eigenvectors \boldsymbol{u} is said to be diagonalizable.
$\boldsymbol{A} \boldsymbol{u}_{\mathbf{1}}=\lambda_{1} \boldsymbol{u}_{\mathbf{1}}$,
$\boldsymbol{A} \boldsymbol{u}_{\mathbf{2}}=\lambda_{2} \boldsymbol{u}_{\mathbf{2}}$,
$\boldsymbol{A} \boldsymbol{u}_{\boldsymbol{n}}=\lambda_{n} \boldsymbol{u}_{\boldsymbol{n}}$,

Example $\quad \boldsymbol{A}=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right) \quad \operatorname{det}\left(\begin{array}{cc}2-\lambda & 1 \\ 4 & 2-\lambda\end{array}\right)=0$

Solution of characteristic polynomial gives: $\lambda_{1}=4, \lambda_{2}=0$

To get the eigenvectors, we solve: $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$
$\left(\begin{array}{cc}2-(4) & 1 \\ 4 & 2-(4)\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \boldsymbol{x}=\binom{1}{2}$
$\left(\begin{array}{cc}2-(0) & 1 \\ 4 & 2-(0)\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \boldsymbol{x}=\binom{-1}{2}$

Example

The eigenvalues of the matrix:

$$
\boldsymbol{A}=\left(\begin{array}{cc}
3 & -18 \\
2 & -9
\end{array}\right)
$$

are $\lambda_{1}=\lambda_{2}=-3$.

Select the incorrect statement:
A) Matrix \boldsymbol{A} is diagonalizable
B) The matrix \boldsymbol{A} has only one eigenvalue with multiplicity 2
C) Matrix \boldsymbol{A} has only one linearly independent eigenvector
D) Matrix \boldsymbol{A} is not singular

Let's look back at diagonalization...

1) If a $n \times n$ matrix \boldsymbol{A} has n linearly independent eigenvectors \boldsymbol{x} then \boldsymbol{A} is diagonalizable, i.e.,

$$
A=U D U^{-1}
$$

where the columns of \boldsymbol{U} are the linearly independent normalized eigenvectors \boldsymbol{x} of \boldsymbol{A} (which guarantees that $\boldsymbol{U}^{\mathbf{1}}$ exists) and \boldsymbol{D} is a diagonal matrix with the eigenvalues of \boldsymbol{A}.
2) If a $n \times n$ matrix \boldsymbol{A} has less then n linearly independent eigenvectors, the matrix is called defective (and therefore not diagonalizable).
3) If a $n \times n$ symmetric matrix \boldsymbol{A} has n distinct eigenvalues then \boldsymbol{A} is diagonalizable.

A $\boldsymbol{n} \times \boldsymbol{n}$ symmetric matrix \boldsymbol{A} with \boldsymbol{n} distinct eigenvalues is diagonalizable.

Suppose λ, \boldsymbol{u} and μ, \boldsymbol{v} are eigenpairs of \boldsymbol{A}
$\lambda \boldsymbol{u}=\boldsymbol{A} \boldsymbol{u}$
$\mu \boldsymbol{v}=\boldsymbol{A} \boldsymbol{v}$

Some things to remember about eigenvalues:

- Eigenvalues can have zero value
- Eigenvalues can be negative
- Eigenvalues can be real or complex numbers
- A $n \times n$ real matrix can have complex eigenvalues
- The eigenvalues of a $n \times n$ matrix are not necessarily unique. In fact, we can define the multiplicity of an eigenvalue.
- If a $n \times n$ matrix has n linearly independent eigenvectors, then the matrix is diagonalizable

How can we get eigenvalues numerically?

Assume that \boldsymbol{A} is diagonalizable (i.e., it has n linearly independent eigenvectors $\boldsymbol{u})$. We can propose a vector \boldsymbol{x} which is a linear combination of these eigenvectors:

$$
\boldsymbol{x}=\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\cdots+\alpha_{n} \boldsymbol{u}_{n}
$$

Power Iteration

Our goal is to find an eigenvector $\boldsymbol{u}_{\boldsymbol{i}}$ of \boldsymbol{A}. We will use an iterative process, where we start with an initial vector, where here we assume that it can be written as a linear combination of the eigenvectors of \boldsymbol{A}.

$$
\boldsymbol{x}_{0}=\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\cdots+\alpha_{n} \boldsymbol{u}_{n}
$$

Power Iteration

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right]
$$

Assume that $\alpha_{1} \neq 0$, the term $\alpha_{1} \boldsymbol{u}_{1}$ dominates the others when k is very large.

Since $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, we have $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \ll 1$ when k is large

Hence, as k increases, \boldsymbol{x}_{k} converges to a multiple of the first eigenvector \boldsymbol{u}_{1}, i.e.,

