Eigenvalues and Eigenvectors

Eigenvalue problem

Let \boldsymbol{A} be an $n \times n$ matrix:

 $x \neq 0$ is an <u>eigenvector</u> of **A** if there exists a scalar λ such that

 $A x = \lambda x$

where λ is called an <u>eigenvalue</u>.

If \boldsymbol{x} is an eigenvector, then $\boldsymbol{\alpha}\boldsymbol{x}$ is also an eigenvector. Therefore, we will usually seek for **normalized eigenvectors**, so that

$$\|\boldsymbol{x}\| = 1$$

Note: When using Python, numpy.linalg.eig will normalize using p=2 norm.

How do we find eigenvalues?

Linear algebra approach:

 $A x = \lambda x$ (A - \lambda I)x = 0

Therefore the matrix $(\mathbf{A} - \lambda \mathbf{I})$ is singular $\Rightarrow det(\mathbf{A} - \lambda \mathbf{I}) = 0$

 $p(\lambda) = det(A - \lambda I)$ is the characteristic polynomial of degree n.

In most cases, there is no analytical formula for the eigenvalues of a matrix (Abel proved in 1824 that there can be no formula for the roots of a polynomial of degree 5 or higher) \Rightarrow Approximate the eigenvalues numerically!

Example

$\boldsymbol{A} = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$

 $det \begin{pmatrix} 2-\lambda & 1\\ 4 & 2-\lambda \end{pmatrix} = 0$

Diagonalizable Matrices

A $n \times n$ matrix A with n linearly independent eigenvectors u is said to be **diagonalizable**.

 $A u_1 = \lambda_1 u_1,$ $A u_2 = \lambda_2 u_2,$ \dots

 $\boldsymbol{A} \boldsymbol{u}_{\boldsymbol{n}} = \lambda_n \boldsymbol{u}_{\boldsymbol{n}},$

Example
$$A = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$
 $det \begin{pmatrix} 2-\lambda & 1 \\ 4 & 2-\lambda \end{pmatrix} = 0$

Solution of characteristic polynomial gives: $\lambda_1 = 4$, $\lambda_2 = 0$

To get the eigenvectors, we solve: $A x = \lambda x$

$$\begin{pmatrix} 2-(4) & 1 \\ 4 & 2-(4) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2-(0) & 1 \\ 4 & 2-(0) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad x = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Example

The eigenvalues of the matrix:

$$\boldsymbol{A} = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix}$$

are $\lambda_1 = \lambda_2 = -3$.

Select the **incorrect** statement:

- A) Matrix **A** is diagonalizable
- B) The matrix \boldsymbol{A} has only one eigenvalue with multiplicity 2
- C) Matrix **A** has only one linearly independent eigenvector
- D) Matrix \boldsymbol{A} is not singular

Let's look back at diagonalization...

1) If a $n \times n$ matrix A has n linearly independent eigenvectors x then A is diagonalizable, i.e.,

$A = UDU^{-1}$

where the columns of U are the linearly independent normalized eigenvectors x of A (which guarantees that U^{-1} exists) and D is a diagonal matrix with the eigenvalues of A.

- 2) If a $n \times n$ matrix A has less then n linearly independent eigenvectors, the matrix is called defective (and therefore not diagonalizable).
- 3) If a $n \times n$ symmetric matrix A has n distinct eigenvalues then A is diagonalizable.

A $n \times n$ symmetric matrix A with n distinct eigenvalues is diagonalizable.

Suppose λ , \boldsymbol{u} and μ , \boldsymbol{v} are eigenpairs of \boldsymbol{A}

 $\lambda \boldsymbol{u} = \boldsymbol{A}\boldsymbol{u}$ $\mu \boldsymbol{v} = \boldsymbol{A}\boldsymbol{v}$

Some things to remember about eigenvalues:

- Eigenvalues can have zero value
- Eigenvalues can be negative
- Eigenvalues can be real or complex numbers
- A $n \times n$ real matrix can have complex eigenvalues
- The eigenvalues of a $n \times n$ matrix are not necessarily unique. In fact, we can define the multiplicity of an eigenvalue.
- If a $n \times n$ matrix has n linearly independent eigenvectors, then the matrix is diagonalizable

How can we get eigenvalues numerically?

Assume that \boldsymbol{A} is diagonalizable (i.e., it has \boldsymbol{n} linearly independent eigenvectors \boldsymbol{u}). We can propose a vector \boldsymbol{x} which is a linear combination of these eigenvectors:

$$\boldsymbol{x} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n$$

Power Iteration

Our goal is to find an eigenvector u_i of A. We will use an iterative process, where we start with an initial vector, where here we assume that it can be written as a linear combination of the eigenvectors of A.

$$\boldsymbol{x}_0 = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n$$

Power Iteration

$$\boldsymbol{x}_{k} = (\lambda_{1})^{k} \left[\alpha_{1} \boldsymbol{u}_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{n} \right]$$

Assume that $\alpha_1 \neq 0$, the term $\alpha_1 u_1$ dominates the others when k is very large.

Since
$$|\lambda_1| > |\lambda_2|$$
, we have $\left(\frac{\lambda_2}{\lambda_1}\right)^k \ll 1$ when k is large

Hence, as k increases, x_k converges to a multiple of the first eigenvector u_1 , i.e.,