Linear System of Equations -Conditioning

the shower faucet

how they are:

Mogno

useful shower temperatures

cold

off, if you push really hard

ø

how they should be:

Numerical experiments

Input has uncertainties:

- Errors due to representation with finite precision
- Error in the sampling

Once you select your numerical method , how much error should you expect to see in your **output?**

Is your method sensitive to errors (perturbation) in the input?

Demo "HilbertMatrix-ConditionNumber"

Suppose we start with a non-singular system of linear equations A x = b.

We change the right-hand side vector \boldsymbol{b} (input) by a small amount $\Delta \boldsymbol{b}$.

How much the solution \boldsymbol{x} (output) changes, i.e., how large is $\Delta \boldsymbol{x}$?

Output Relative error	$\ \Delta x \ / \ x \ $	$\ \Delta x \ \ b\ $
Input Relative error	$-\frac{1}{\ \Delta b\ /\ b\ }$	$\frac{1}{\ \Delta \boldsymbol{b}\ \ \boldsymbol{x}\ }$

 $\frac{\text{Output Relative error}}{\text{Input Relative error}} = \frac{\|\Delta x \| / \|x\|}{\|\Delta b \| / \|b\|} = \frac{\|\Delta x \| \|b\|}{\|\Delta b \| \|x\|}$

Output Relative error

Input Relative error

$$\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \|A\| \frac{\|\Delta b\|}{\|b\|}$$

We can also add a perturbation to the matrix A (input) by a small amount E, such that

$$(A+E)\,\widehat{x}=b$$

and in a similar way obtain:

$$\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \|A\| \frac{\|E\|}{\|A\|}$$

Condition number

The condition number is a measure of sensitivity of solving a linear system of equations to variations in the input.

The condition number of a matrix **A**:

 $cond(A) = ||A^{-1}|| ||A||$

Recall that the induced matrix norm is given by

 $||A|| = \max_{||x||=1} ||Ax||$

And since the condition number is relative to a given norm, we should be precise and for example write:

 $cond_2(A)$ or $cond_{\infty}(A)$

Demo "HilbertMatrix-ConditionNumber"/

Condition number

$$\frac{\|\Delta x\|}{\|x\|} \leq cond(A) \frac{\|\Delta b\|}{\|b\|}$$

Small condition numbers mean not a lot of error amplification. Small condition numbers are good!

But how small?

Condition number

$$\frac{\|\Delta x\|}{\|x\|} \leq cond(A) \frac{\|\Delta b\|}{\|b\|}$$

Small condition numbers mean not a lot of error amplification. Small condition numbers are good!

Recall that

$$\|I\| = \max_{\|x\|=1} \|I\| \|X\| = 1$$

Which provides with a lower bound for the condition number:

 $cond(A) = ||A^{-1}|| ||A|| \ge ||A^{-1}A|| = ||I|| = 1$

If A^{-1} does not exist, then $cond(A) = \infty$ (by convention)

Recall Induced Matrix Norms

$$\|A\|_1 = \max_j \sum_{i=1}^n |A_{ij}|$$

Maximum absolute column sum of the matrix \boldsymbol{A}

$$\|\boldsymbol{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |A_{ij}|$$

Maximum absolute row sum of the matrix \boldsymbol{A}

$$\|\boldsymbol{A}\|_2 = \max_k \sigma_k$$

 σ_k are the singular value of the matrix A

Condition Number of a Diagonal Matrix

What is the 2-norm-based condition number of the diagonal matrix

$$A = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}?$$

Condition Number of Orthogonal Matrices

What is the 2-norm condition number of an orthogonal matrix A?

$$cond(A) = ||A^{-1}||_2 ||A||_2 = ||A^T||_2 ||A||_2 = 1$$

That means orthogonal matrices have optimal conditioning.

They are very well-behaved in computation.

About condition numbers

- 1. For any matrix A, $cond(A) \ge 1$
- 2. For the identity matrix I, cond(I) = 1
- 3. For any matrix **A** and a nonzero scalar γ , $cond(\gamma A) = cond(A)$

4. For any diagonal matrix
$$\boldsymbol{D}$$
, $cond(\boldsymbol{D}) = \frac{max|d_i|}{min|d_i|}$

- 5. The condition number is a measure of how close a matrix is to being singular: a matrix with large condition number is nearly singular, whereas a matrix with a condition number close to 1 is far from being singular
- 6. The determinant of a matrix is NOT a good indicator is a matrix is near singularity

Demo "HilbertMatrix-ConditionNumber"

Residual versus error

Our goal is to find the solution x to the linear system of equations A x = b

Let us recall the solution of the perturbed problem

$$\widehat{x} = (x + \Delta x)$$

which could be the solution of

$$A \widehat{x} = (b + \Delta b), \qquad (A + E)\widehat{x} = b, \qquad (A + E) \widehat{x} = (b + \Delta b)$$

And the **error vector** as

$$e=\Delta x=\widehat{x}-x$$

We can write the **residual vector** as

$$r=b-A\,\widehat{x}$$

Relative residual: $\frac{\|r\|}{\|A\| \|x\|}$ (How well the solution satisfies the problem)

Relative error: $\frac{\|\Delta x\|}{\|x\|}$ (How close the approximated solution is from the exact one)

Residual versus error

It is possible to show that the residual satisfy the following inequality:

$$\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\|\|\widehat{\boldsymbol{x}}\|} \leq c \ \epsilon_m$$

Where *c* is "large" constant when LU/Gaussian elimination is performed without pivoting and "small" with partial pivoting.

Therefore, Gaussian elimination with partial pivoting yields small relative residual regardless of conditioning of the system.

When solving a system of linear equations via LU with partial pivoting, the relative residual is guaranteed to be small!

Residual versus error

Let us first obtain the norm of the error:

Rule of thumb for conditioning

Suppose we want to find the solution x to the linear system of equations A x = b using LU factorization with partial pivoting and backward/forward substitutions.

Suppose we compute the solution \hat{x} .

If the entries in **A** and **b** are accurate to S decimal digits,

and $cond(A) = \mathbf{10}^W$,

then the elements of the solution vector \hat{x} will be accurate to about

S - W

decimal digits