Truncation errors: using Taylor series to approximation functions

Approximating functions using polynomials:

Let's say we want to approximate a function $f(x)$ with a polynomial

$$
f(x)=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots
$$

For simplicity, assume we know the function value and its derivatives at $x_{o}=0$ (we will later generalize this for any point). Hence,
$f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots$
$f^{\prime \prime}(x)=2 a_{2}+(3 \times 2) a_{3} x+(4 \times 3) a_{4} x^{2}+\cdots$
$f^{\prime \prime \prime}(x)=(3 \times 2) a_{3}+(4 \times 3 \times 2) a_{4} x+\cdots$
$f^{\prime v}(x)=(4 \times 3 \times 2) a_{4}+\cdots$
$f(0)=a_{o} \quad f^{\prime \prime}(0)=2 a_{2} \quad f^{\prime v}(0)=(4 \times 3 \times 2) a_{4}$
$f^{\prime}(0)=a_{1} \quad f^{\prime \prime \prime}(0)=(3 \times 2) a_{3}$

$$
f^{(i)}(0)=i!a_{i}
$$

Taylor Series

Taylor Series approximation about point $x_{o}=0$

$$
\begin{aligned}
& f(x)=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots \\
& f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}
\end{aligned}
$$

Taylor Series

In a more general form, the Taylor Series approximation about point x_{o} is given by:
$f(x)=f\left(x_{o}\right)+f^{\prime}\left(x_{o}\right)\left(x-x_{o}\right)+\frac{f^{\prime \prime}\left(x_{o}\right)}{2!}\left(x-x_{o}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{o}\right)}{3!}\left(x-x_{o}\right)^{3}+\cdot \cdot$
$f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{o}\right)}{i!}\left(x-x_{o}\right)^{i}$

Iclicker question

Assume a finite Taylor series approximation that converges everywhere for a given function $f(x)$ and you are given the following information:

$$
f(1)=2 ; f^{\prime}(1)=-3 ; f^{\prime \prime}(1)=4 ; f^{(n)}(1)=0 \forall n \geq 3
$$

Evaluate $f(4)$
A) 29
B) 11
C) -25
D) -7
E) None of the above

Taylor Series

We cannot sum infinite number of terms, and therefore we have to truncate.

How big is the error caused by truncation? Let's write $h=x-x_{o}$
$f\left(x_{o}+h\right)-\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}=\sum_{i=n+1}^{\infty} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}$
And as $h \rightarrow 0$ we write:

$$
\left|f\left(x_{o}+h\right)-\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}\right| \leq \mathrm{C} \cdot h^{n+1}
$$

$\begin{aligned} & \text { Error due to Taylor } \\ & \text { approximation of } \\ & \text { degree } \mathrm{n}\end{aligned}$$\left\{\left|f\left(x_{o}+h\right)-\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}\right|=O\left(h^{n+1}\right)\right.$

Taylor series with remainder

Let f be $(n+1)$-times differentiable on the interval $\left(x_{o}, x\right)$ with $f^{(n)}$ continuous on $\left[x_{o}, x\right]$, and $h=x-x_{o}$

$$
f\left(x_{o}+h\right)-\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}=\sum_{i=n+1}^{\infty} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}
$$

Then there exists a $\xi \in\left(x_{0}, x\right)$ so that

$$
f\left(x_{o}+h\right)-\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i}=\underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(\xi-x_{o}\right)^{n+1}} \quad f(x)-T(x)=R(x)
$$

And since $\left|\xi-x_{o}\right| \leq h \quad$ Taylor remainder
$f\left(x_{o}+h\right)-\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{o}\right)}{i!}(h)^{i} \leq \frac{f^{(n+1)}(\xi)}{(n+1)!}(h)^{n+1}$

Demo: Polynomial Approximation with Derivatives

$$
\mathrm{f}
$$

$$
\frac{\text { taylor }}{\sqrt{-x^{2}+1}} \quad \frac{x^{2}}{2}+1
$$

Demo: Polynomial Approximation with Derivatives

f	taylor
$\sqrt{-x^{2}+1}$	$-\frac{x^{2}}{2}+1$

error = taylor - f

Iclicker question

Error Order for Taylor series

The series expansion for e^{x} about 2 is

$$
\exp (2) \cdot\left(1+(x-2)+\frac{(x-2)^{2}}{2!}+\frac{(x-2)^{3}}{3!}+\ldots\right) .
$$

If we evaluate e^{x} using only the first four terms of this expansion (i.e. only terms up to and including $\left.\frac{(x-2)^{3}}{3!}\right)$, then what is the error in big-O notation?

Choice*

A) $O\left(x^{4}\right)$
B) $O\left(x^{5}\right)$
C) $O\left(x^{3}\right)$
D) $O\left((x-2)^{3}\right)$
E) $O\left((x-2)^{4}\right)$

Making error predictions

Suppose you expand $\sqrt{x-10}$ in a Taylor polynomial of degree 3 about the center $x_{0}=12$. For $h_{1}=0.5$, you find that the Taylor truncation error is about 10^{-4}.
What is the Taylor truncation error for $h_{2}=0.25$?
$\operatorname{Error}(h)=O\left(h^{n+1}\right)$, where $n=3$, i.e.

$$
\begin{aligned}
& \operatorname{Error}\left(h_{1}\right) \approx C \cdot h_{1}^{4} \\
& \operatorname{Error}\left(h_{2}\right) \approx C \cdot h_{2}^{4}
\end{aligned}
$$

While not knowing C or lower order terms, we can use the ratio of h_{2} / h_{1}

$$
\operatorname{Error}\left(h_{2}\right) \approx C \cdot h_{2}^{4}=C \cdot h_{1}^{4}\left(\frac{h_{2}}{h_{1}}\right)^{4} \approx \operatorname{Error}\left(h_{1}\right) \cdot\left(\frac{h_{2}}{h_{1}}\right)^{4}
$$

Can make prediction of the error for one h if we know another.

Using Taylor approximations to obtain derivatives

Let's say a function has the following Taylor series expansion about $x=2$.
$f(x)=\frac{5}{2}-\frac{5}{2}(x-2)^{2}+\frac{15}{8}(x-2)^{4}-\frac{5}{4}(x-2)^{6}+\frac{25}{32}(x-2)^{8}+0\left((x-2)^{9}\right)$

Therefore the Taylor polynomial of order 4 is given by
$t(x)=\frac{5}{2}-\frac{5}{2}(x-2)^{2}+\frac{15}{8}(x-2)^{4}$
where the first derivative is
$t^{\prime}(x)=-5(x-2)+\frac{15}{2}(x-2)^{3}$

Using Taylor approximations to obtain derivatives

We can get the approximation for the derivative of the function $f(x)$ using the derivative of the Taylor approximation:
$t^{\prime}(x)=-5(x-2)+\frac{15}{2}(x-2)^{3}$
For example, the approximation for $f^{\prime}(2.3)$ is
$f^{\prime}(2.3) \approx t^{\prime}(2.3)=-1.2975$
(note that the exact value is
$f^{\prime}(2.3)=-1.31444$

What happens if we want to use the same method to approximate $f^{\prime}(3)$?

Iclicker question

The function

$$
f(x)=\cos (x) x^{2}+\frac{\sin (2 x)}{\left(x+2 x^{2}\right)^{3}}
$$

is approximated by the following Taylor polynomial of degree $n=2$ about $x=2 \pi$

$$
t_{2}(x)=39.4784+12.5664(x-2 \pi)-18.73922(x-2 \pi)^{2}
$$

Determine an approximation for the first derivative of $f(x)$ at $x=6.1$
A) 18.7741
B) 12.6856
C) 19.4319
D) 15.6840

Computing integrals using Taylor Series

A function $f(x)$ is approximated by a Taylor polynomial of order n around $x=0$.

$$
t_{n}=\sum_{i=0}^{n} \frac{f^{(i)}(0)}{i!}(x)^{i}
$$

We can find an approximation for the integral $\int_{S}^{t} f(x) d x$ by integrating the polynomial:

$$
\begin{aligned}
\int_{S}^{t} f(x) d x & \approx \int_{S}^{t} a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} d x \\
& =a_{0} \int_{S}^{t} 1 d x+a_{1} \int_{S}^{t} x \cdot d x+a_{2} \int_{S}^{t} x^{2} d x+a_{3} \int_{S}^{t} x^{3} d x
\end{aligned}
$$

Where we can use $\int_{S}^{t} x^{i} d x=\frac{t^{i+1}}{i+1}-\frac{s^{i+1}}{i+1}$

Iclicker question

A function $f(x)$ is approximated by the following Taylor polynomial:

$$
t_{5}(x)=10+x-5 x^{2}-\frac{x^{3}}{2}+\frac{5 x^{4}}{12}+\frac{x^{5}}{24}-\frac{x^{6}}{72}
$$

Determine an approximated value for $\int_{-3}^{1} f(x) d x$
A) -10.27
B) -11.77
C) 11.77
D) 10.27

Finite difference approximation

For a given smooth function $f(x)$, we want to calculate the derivative $f^{\prime}(x)$ at $x=1$.

Suppose we don't know how to compute the analytical expression for $f^{\prime}(x)$, but we have available a code that evaluates the function value:

```
def f(x):
    # do stuff here
    feval = ...
    return feval
```

We know that:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)
$$

Can we just use $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$? How do we choose h ? Can we get estimate the error of our approximation?

For a differentiable function $f: \mathcal{R} \rightarrow \mathcal{R}$, the derivative is defined as:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)
$$

Let's consider the finite difference approximation to the first derivative as

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

Where h is often called a "perturbation", i.e. a "small" change to the variable x. By the Taylor's theorem we can write:

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(\xi) \frac{h^{2}}{2}
$$

For some $\xi \in[x, x+h]$. Rearranging the above we get:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-f^{\prime \prime}(\xi) \frac{h}{2}
$$

Therefore, the truncation error of the finite difference approximation is bounded by $\frac{h}{2}$, where M is a bound on $\left|f^{\prime \prime}(\xi)\right|$ for ξ near x.

Demo: Finite Difference

$$
\begin{aligned}
& f(x)=e^{x}-2 \\
& \text { We want to obtain an approximation for } f^{\prime}(1) \\
& \text { dfexact }=e^{x} \\
& \text { dfapprox }=\frac{e^{x+h}-2-\left(e^{x}-2\right)}{h} \\
& \text { error }(h)=\operatorname{abs}(\text { dfexact }-d f a p p r o x) \\
& \text { error }<\left|f^{\prime \prime}(\xi) \frac{h}{2}\right|
\end{aligned}
$$

$1.000000 \mathrm{E}+00$	$1.952492 \mathrm{E}+00$
$5.000000 \mathrm{E}-01$	$8.085327 \mathrm{E}-01$
$2.500000 \mathrm{E}-01$	$3.699627 \mathrm{E}-01$
$1.250000 \mathrm{E}-01$	$1.771983 \mathrm{E}-01$
$6.250000 \mathrm{E}-02$	$8.674402 \mathrm{E}-02$
$3.125000 \mathrm{E}-02$	$4.291906 \mathrm{E}-02$
$1.562500 \mathrm{E}-02$	$2.134762 \mathrm{E}-02$
$7.812500 \mathrm{E}-03$	$1.064599 \mathrm{E}-02$
$3.906250 \mathrm{E}-03$	$5.316064 \mathrm{E}-03$
$1.953125 \mathrm{E}-03$	$2.656301 \mathrm{E}-03$
$9.765625 \mathrm{E}-04$	$1.327718 \mathrm{E}-03$
$4.882812 \mathrm{E}-04$	$6.637511 \mathrm{E}-04$
$2.441406 \mathrm{E}-04$	$3.318485 \mathrm{E}-04$
$1.220703 \mathrm{E}-04$	$1.659175 \mathrm{E}-04$
$6.103516 \mathrm{E}-05$	$8.295707 \mathrm{E}-05$
$3.051758 \mathrm{E}-05$	$4.147811 \mathrm{E}-05$
$1.525879 \mathrm{E}-05$	$2.073897 \mathrm{E}-05$
$7.629395 \mathrm{E}-06$	$1.036945 \mathrm{E}-05$
$3.814697 \mathrm{E}-06$	$5.184779 \mathrm{E}-06$
$1.907349 \mathrm{E}-06$	$2.592443 \mathrm{E}-06$

Demo: Finite Difference

$f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)$
Should we just keep decreasing the perturbation h, in order to approach the limit $h \rightarrow 0$ and obtain a better approximation for the derivative?

$$
\begin{gathered}
10^{0} \\
10^{-2} \\
10^{-4} \\
10^{-14} \\
10^{-11} \\
10^{-8} \\
h
\end{gathered} 0^{-5} \quad 10^{-2} \quad \begin{gathered}
\text { Uh-Oh! } \\
f(x)=e^{x}-2
\end{gathered}
$$

Rounding error!

1) for a "very small" $h(h<\epsilon) \rightarrow f(1+h)=f(1) \rightarrow f^{\prime}(1)=0$
2) for other still "small" $h(h>\epsilon) \rightarrow f(1+h)-f(1)$ gives results with fewer significant digits
(We will later define the meaning of the quantity ϵ)

Truncation error: $\quad \operatorname{error} \sim M \frac{h}{2}$

Rounding error: error $\sim \frac{2 \epsilon}{h}$

$$
\text { error } \sim \frac{2 \epsilon}{h}
$$

Minimize the error

$$
\frac{2 \epsilon}{h}+M \frac{h}{2}
$$

Gives

$$
h=2 \sqrt{\epsilon / M}
$$

