Singular Value Decomposition

(matrix factorization)
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Singular Value Decomposition

The SVD is a factorization of a M XN matrix into
A=UzVT

where U is a mXm orthogonal matrix, VT isanxn orthogonal matrix and X
is a mXn diagonal matrix.

For a square matrix (M = n): 01 > o) = 03 ...
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A=lu; .. u, : :
: : Op V,?;
: 01 T
. O'n




e
Reduced SVD

What happens when A is not a square matrix?

Hym>n

A=UxVl=|u, .. u,| .. u,

mXxXm mXxn

We can instead re-write the above as:

A=UgZIpVT

Where Up is a mXnN matrix and X g is a XN matrix
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Reduced SVD

2yn>m

v{

: : 01 0 :
A=UxVT = (u1 um> . VE

: : o 0 : :
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mXxXm mXn nxn

We can instead re-write the above as:
. T
A=UZgVpg

where Vg is a XM matrix and X g is a mMXM matrix

In general:
Up is a mXk matrix

A= URZRVRT Y pisa k Xk matrix k = min(m, n)
\_ Vg is a nXk matrix J
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Let’s take a look at the product 2T¥ where X has the singular values of a A,
a M XN matrix.
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Assume A with the singular value decomposition A=UZXVT, Let’s take a
look at the eigenpairs corresponding to ATA:

T ATA=(UzvT) (UzVT)
vy (vt (vzvlh) =veluTuzvl =velzyT

Hence ATA =V 22 T

Recall that columns of V are all linear independent (orthogonal matrix), then

from diagonalization (B = XDX _1), we get:

* the columns of V are the eigenvectors of the matrix ATA

* The diagonal entries of X2 are the eigenvalues of ATA

Let’s call A the eigenvalues of ATA, then o 2= A
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In a similar way,

AT = (UzVT) (U Ty’
(UzvT)(vT) (2)TUT = Uz VTveTUT = Us 5TUT

Hence AAT U ZZ UT

Recall that columns of U are all linear independent (orthogonal matrices),

then from diagonalization (B = XDX _1), we get:

* The columns of U are the cigenvectors of the matrix AAT
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1.
2.
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How can we compute an SVD of a matrix A ?

Evaluate the 1 eigenvectors V; and eigenvalues A; of ATA

Make a matrix V from the normalized vectors V;. The columns are called
«__ - . b))
right singular vectors”.

= o)

Make a diagonal matrix from the square roots of the eigenvalues.

01
Y = 0= W/Ai and 0'12 (0] = 03 ...
O-Tl

Find U: A=UXVI = UX=AV=U = AV X1 The columns
are called the “left singular vectors’.
%




True or False?

A has the Singular value decomposition A=UVT.

The matrices U and V are not singular

* The matrix X can have zero diagonal entries

» U]l =1

* The SVD exists when the matrix A is singular

* The algorithm to evaluate SVD will fail when taking the square root

of a negative eigenvalue
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Singular values are always non-negative

Singular values cannot be negative since ATAis a positive semi-
definite matrix (for real matrices 4)

A matrix is positive definite if xTBx > 0forVx # 0
A matrix is positive semi-definite if xTBx > 0forVx #0

What do we know about the matrix ATA ?
xT ATA x = (Ax)TAx = ||Ax||3 = 0

Hence we know that ATA4 is a positive semi-definite matrix

A positive semi-definite matrix has non-negative eigenvalues

Bx=Ax=xTBx=xTAx=2|x]|5=0=1>0




4 ™
Cost of SVD

The cost of an SVD is proportional to M N% + n3where the constant of

proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.

10

Wall time [s]

10

Coyp = a(mn? +n3) = 0(n3)

Catmat = = O(ng)
CLU = 2n3/3 = 0(713)

10" 10° 10° 10

Matrix size n
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SVD summary:

 The SVD is a factorization of a mXn matrix into A = U X VT where U is a mXm
orthogonal matrix, VT isanxn orthogonal matrix and X is a mXn diagonal matrix.

* Inreduced form: A = URZRVRT, where Up is a mXk matrix, X is a k Xk matrix,
and Vg is a nXk matrix, and kK = min(m, n).

* The columns of V are the eigenvectors of the matrix ATA, denoted the right singular

vectors.

* The columns of U are the eigenvectors of the matrix AAT, denoted the left singular

vectors.

* The diagonal entries of 22 are the eigenvalues of ATA. o i = +/A; are called the singular

values.

* The singular values are always non-negative (since ATAisa positive semi-definite matrix,

the eigenvalues are always 4 = 0)




Singular Value Decomposition

(applications)
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A; = oyuyv! whatisrank(4;) =?

In general, rank(4,) = k
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1) Determining the rank of a matrix

Suppose AisamXn rectangular matrix where m > n:

;/

= gVl + ouy Ve + -+ o u, v

N

B) n

C) depends on the matrix
D) NOTA
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Rank of a matrix

For general rectangular matrix A with dimensions mXn, the reduced SVD is:

A =UgIpVys' k = min(m, n)
/ ./ J K‘ k

k Xn
mXn mXk A = alulv
kXk
i=1
()
0-1 O
Z: O'k E: .,
0 0 o, 0 .. O

\ s
If 0; #+ 0 Vi, then rank(A) = k (Full rank matrix)

In general, rank(A4) = r, where r is the number of non-zero singular values 0

KT' < k (Rank deficient)
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Rank of a matrix

* The rank of A equals the number of non-zero singular values which is
the same as the number of non-zero diagonal elements in X.

* Rounding errors may lead to small but non-zero singular values in a
rank deficient matrix, hence the rank of a matrix determined by the
number of non-zero singular values is sometimes called “effective rank”.

* The right-singular vectors (columns of V') corresponding to vanishing
singular values span the null space of A.

* The left-singular vectors (columns of U) corresponding to the non-zero

singular values of A span the range of A.




2) Pseudo-inverse

* Problem:if A is rank-deficient, X is not be invertible
* How to fix it: Define the Pseudo Inverse

e Pseudo-Inverse of a diagonal matrix:

(1,
(Z+)i=<;i’ lfO'l'-'/=0
\0, if0'i=0

e Pseudo-Inverse of a matrix A:

At =yxtuT
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3) Matrix norms

The Euclidean norm of an orthogonal matrix is equal to 1

10l = max llUx|l; = max (Ux)T(Ux)= max VaTx = max flal; = 1
2= |2=1 |,=1

The Euclidean norm of a matrix is given by the largest singular value
= max [l x|}, = max UZVix||. = max ||ZVTx|. =
Iallz = max, lldxllz = o \ x|, |x||2=1” I

= max ||ZVTx|| = max ||Zy||2—max(al)
[VTx||,=1 2 yllz=

Where we used the fact that ||U||, = 1, ||V]|], = 1 and X is diagonal

”AHZ — maX(Ui) = Omax Omax is the largest singular value
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4) Norm for the inverse of a matrix

The Euclidean norm of the inverse of a square-matrix is given by:

Assume here A4 is full rank, so that A1 exists

1AL, = max1||(UZ VT)‘1x||2 = max ||V 21‘1UTx||2

Ixll2= lIxll2=1

Since ||U||l, = 1, ||[V]], = 1 and X is diagonal then

”A_l |2 = Omin is the smallest singular value

™~
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5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a m X n matrix is:

1A% ]l2=—

1
Or

where 0} is the smallest non-zero singular value. This is valid for any matrix, regardless
of the shape or rank.

Note that for a full rank square matrix, AT |5 is the same as ||A_1 Il-.

Zero matrix: If 4 is a zero matrix, then A is also the zero matrix, and ||A7|| 2= 0
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©6) Condition number of a matrix

The condition number of a matrix is given by

cond,(4) = ||A||, ||AT]|,

If the matrix is full rank: rank(4) = min(m, n)

o
cond,(A) = —=
Omin

where Oy gy is the largest singular value and Gy, is the smallest singular value

If the matrix is rank deficient: rank(4) < min(m, n)

cond,(A) = o
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/) Low-Rank Approximation

Another way to write the SVD (assuming for now m > n for simplicity)

P . o Vi
=lu .. u, : : :
P .. O VI

= O-lu]_V:’lT + O-zuzvg S R O-nunVZ;

The SVD writes the matrix A as a sum of outer products (of left and right

singular vectors).
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/) Low-Rank Approximation (cont.)

The best rank-K approximation for a MXn matrix A, (where k
< min(m,n)) is the one that minimizes the following problem:

min |[A — Al
Ay

such that rank(4,) <k

When using the induced 2-norm, the best rank-k approximation is given by:

Ak = O'1u1V{ + O'Zuzvg S O-kukvlz
0-120-220-3...20

Note that rank(A) = nand rank(A;) = k and the norm of the

difference between the matrix and its approximation is

14— Aill; = ||Uk+1uk+1vg+1 + OpyoUpr2Vigy + oo+ O'nunVTT;HZ = Ok+1

-
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Example: Image compression
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Example: Image compression




8) Using SVD to solve square system of
linear equations

If A is a nXn square matrix and we want to solve A X = b, we can use

the SVD for A such that
UZV'x=b
LVix=U"b
Solve: 2y = UTh (diagonal matrix, easy to solve!)
Evaluate: x = V' y

Cost of solve: 0(n?)
Cost of decomposition 0 (Tlg) (recall that SVD and LU have the same
cost asymptotic behavior, however the number of operations - constant

factor before n3 - for the SVD is larger than LU)
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