
Singular Value Decomposition
(matrix factorization)



Singular Value Decomposition
The SVD is a factorization of a 𝑚×𝑛 matrix into

𝑨 = 𝑼 𝚺 𝑽𝑻

where 𝑼 is a 𝑚×𝑚 orthogonal matrix, 𝑽𝑻 is a 𝑛×𝑛 orthogonal matrix and 𝚺
is a 𝑚×𝑛 diagonal matrix.

For a square matrix (𝒎 = 𝒏):

𝑨 =
⋮ … ⋮
𝒖& … 𝒖'
⋮ … ⋮

𝜎&
⋱

𝜎'

… 𝐯&( …
⋮ ⋮ ⋮
… 𝐯'( …

𝑨 =
⋮ … ⋮
𝒖& … 𝒖'
⋮ … ⋮

𝜎&
⋱

𝜎'

⋮ … ⋮
𝒗& … 𝒗'
⋮ … ⋮

(

𝜎& ≥ 𝜎) ≥ 𝜎*…



Reduced SVD

𝑨 = 𝑼 𝚺 𝑽𝑻 =
⋮ … ⋮ … ⋮
𝒖" … 𝒖# … 𝒖$
⋮ … ⋮ … ⋮

𝜎"
⋱

𝜎#
0
⋮
0

… 𝐯"% …
⋮ ⋮ ⋮
… 𝐯#% …

𝑚×𝑛𝑚×𝑚 𝑛×𝑛

𝑨 = 𝑼𝑹 𝚺𝑹𝑽𝑻

What happens when 𝑨 is not a square matrix?

1) 𝒎 > 𝒏

We can instead re-write the above as:

Where 𝑼𝑹 is a 𝑚×𝑛 matrix and 𝚺𝑹 is a 𝑛×𝑛 matrix



Reduced SVD

𝑨 = 𝑼 𝚺 𝑽𝑻 =
⋮ … ⋮
𝒖" … 𝒖#
⋮ … ⋮

𝜎&
⋱

𝜎.

0
⋱

0

… 𝐯"% …
⋮ ⋮ ⋮
… 𝐯$% …
⋮ ⋮ ⋮
… 𝐯#% …

𝑚×𝑛𝑚×𝑚 𝑛×𝑛

𝑨 = 𝑼 𝚺𝑹𝑽𝑹𝑻

2) 𝒏 > 𝒎

We can instead re-write the above as:

where 𝑽𝑹 is a 𝑛×𝑚 matrix and 𝚺𝑹 is a 𝑚×𝑚 matrix

In general:

𝑨 = 𝑼𝑹𝚺𝑹𝑽𝑹𝑻
𝑼𝑹 is a 𝑚×𝑘 matrix 
𝚺𝑹 is a 𝑘 ×𝑘 matrix
𝑽𝑹 is a 𝑛×𝑘 matrix

𝑘 = min(𝑚, 𝑛)



Let’s take a look at the product 𝚺𝑻𝚺, where 𝚺 has the singular values of a 𝑨, 
a 𝑚×𝑛 matrix.

𝚺𝑻𝚺 =
𝜎"

⋱
𝜎#

0
⋱

0

𝜎"
⋱

𝜎#
0
⋮
0

=
𝜎"$

⋱
𝜎#$

𝑚×𝑛

𝑛×𝑚 𝑛×𝑛

𝚺𝑻𝚺 =

𝜎"
⋱

𝜎%
0
⋮
0

𝜎"
⋱

𝜎%

0
⋱

0
=

𝜎"$
⋱

𝜎%$

0
⋱

0
0

⋱
0

0
⋱

0𝑚×𝑛
𝑛×𝑚 𝑛×𝑛

𝑚 > 𝑛

𝑛 > 𝑚



Assume 𝑨 with the singular value decomposition 𝑨 = 𝑼 𝚺 𝑽𝑻. Let’s take a 
look at the eigenpairs corresponding to 𝑨𝑻𝑨:

𝑨𝑻𝑨 = 𝑼 𝚺 𝑽𝑻
𝑻
𝑼 𝚺 𝑽𝑻

𝑽𝑻 𝑻 𝚺 𝑻𝑼𝑻 𝑼 𝚺 𝑽𝑻 = 𝑽𝚺𝑻𝑼𝑻 𝑼 𝚺 𝑽𝑻 = 𝑽 𝚺𝑻𝚺 𝑽𝑻

Hence 𝑨𝑻𝑨 = 𝑽 𝚺𝟐 𝑽𝑻

Recall that columns of 𝑽 are all linear independent (orthogonal matrix), then 
from diagonalization (𝑩 = 𝑿𝑫𝑿1𝟏), we get:

• the columns of 𝑽 are the eigenvectors of the matrix 𝑨𝑻𝑨
• The diagonal entries of 𝚺𝟐 are the eigenvalues of 𝑨𝑻𝑨

Let’s call 𝜆 the eigenvalues of 𝑨𝑻𝑨, then 𝜎3) = 𝜆3



In a similar way,

𝑨𝑨𝑻 = 𝑼 𝚺 𝑽𝑻 𝑼 𝚺 𝑽𝑻
𝑻

𝑼 𝚺 𝑽𝑻 𝑽𝑻 𝑻 𝚺 𝑻𝑼𝑻 = 𝑼 𝚺 𝑽𝑻𝑽𝚺𝑻𝑼𝑻 = 𝑼𝚺 𝚺𝑻𝑼𝑻

Hence 𝑨𝑨𝑻 = 𝑼 𝚺𝟐 𝑼𝑻

Recall that columns of 𝑼 are all linear independent (orthogonal matrices), 
then from diagonalization (𝑩 = 𝑿𝑫𝑿1𝟏), we get:

• The columns of 𝑼 are the eigenvectors of the matrix 𝑨𝑨𝑻



How can we compute an SVD of a matrix A ?
1. Evaluate the 𝑛 eigenvectors 𝐯3 and eigenvalues 𝜆3 of 𝑨𝑻𝑨
2. Make a matrix 𝑽 from the normalized vectors 𝐯3. The columns are called 

“right singular vectors”.

𝑽 =
⋮ … ⋮
𝐯& … 𝐯'
⋮ … ⋮

3. Make a diagonal matrix from the square roots of the eigenvalues.

𝚺 =
𝜎&

⋱
𝜎'

𝜎3= 𝜆3 and 𝜎&≥ 𝜎) ≥ 𝜎*…

4. Find  𝑼: 𝑨 = 𝑼 𝚺 𝑽𝑻 ⟹𝑼𝚺 = 𝑨 𝑽⟹ 𝑼 = 𝑨 𝑽 𝚺1𝟏. The columns 
are called the “left singular vectors”.



True or False?

𝑨 has the singular value decomposition 𝑨 = 𝑼 𝚺 𝑽𝑻.

• The matrices 𝑼 and 𝑽 are not singular

• The matrix 𝚺 can have zero diagonal entries

• 𝑼 ) = 1

• The SVD exists when the matrix 𝑨 is singular

• The algorithm to evaluate SVD will fail when taking the square root 
of a negative eigenvalue



Singular values cannot be negative since 𝑨𝑻𝑨 is a positive semi-
definite matrix (for real matrices 𝑨)

• A matrix is positive definite if 𝒙𝑻𝑩𝒙 > 𝟎 for ∀𝒙 ≠ 𝟎
• A matrix is positive semi-definite if 𝒙𝑻𝑩𝒙 ≥ 𝟎 for ∀𝒙 ≠ 𝟎

• What do we know about the matrix 𝑨𝑻𝑨 ?
𝒙𝑻 𝑨𝑻𝑨 𝒙 = (𝑨𝒙)𝑻𝑨𝒙 = 𝑨𝒙 𝟐

𝟐 ≥ 0

• Hence we know that 𝑨𝑻𝑨 is a positive semi-definite matrix

• A positive semi-definite matrix has non-negative eigenvalues

𝑩𝒙 = 𝜆𝒙 ⟹ 𝒙𝑻𝑩𝒙 = 𝒙𝑻 𝜆 𝒙 = 𝜆 𝒙 𝟐
𝟐 ≥ 0 ⟹ 𝜆 ≥ 0

Singular values are always non-negative



Cost of SVD
The cost of an SVD is proportional to 𝒎𝒏𝟐 + 𝒏𝟑where the constant of 
proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.

𝐶456 = 𝛼 𝑚 𝑛) + 𝑛* = 𝑂 𝑛*
𝐶.78.78 = 𝑛*= 𝑂 𝑛*
𝐶9: = 2𝑛*/3 = 𝑂 𝑛*



SVD summary:
• The SVD is a factorization of a 𝑚×𝑛 matrix into 𝑨 = 𝑼 𝚺 𝑽𝑻 where 𝑼 is a 𝑚×𝑚

orthogonal matrix, 𝑽𝑻 is a 𝑛×𝑛 orthogonal matrix and 𝚺 is a 𝑚×𝑛 diagonal matrix.

• In reduced form: 𝑨 = 𝑼𝑹𝚺𝑹𝑽𝑹𝑻, where 𝑼𝑹 is a 𝑚×𝑘 matrix, 𝚺𝑹 is a 𝑘 ×𝑘 matrix, 
and 𝑽𝑹 is a 𝑛×𝑘 matrix, and 𝑘 = min(𝑚, 𝑛).

• The columns of 𝑽 are the eigenvectors of the matrix 𝑨𝑻𝑨, denoted the right singular 
vectors.

• The columns of 𝑼 are the eigenvectors of the matrix 𝑨𝑨𝑻, denoted the left singular 
vectors.

• The diagonal entries of 𝚺𝟐 are the eigenvalues of 𝑨𝑻𝑨. 𝜎&= 𝜆& are called the singular 
values.

• The singular values are always non-negative (since 𝑨𝑻𝑨 is a positive semi-definite matrix, 
the eigenvalues are always 𝜆 ≥ 0)



Singular Value Decomposition
(applications)



1) Determining the rank of a matrix

𝑨 =
⋮ … ⋮ … ⋮
𝒖" … 𝒖' … 𝒖#
⋮ … ⋮ … ⋮

𝜎"
⋱

𝜎'
0
⋮
0

… 𝐯"( …
⋮ ⋮ ⋮
… 𝐯'( …

Suppose 𝑨 is a 𝑚×𝑛 rectangular matrix where𝑚 > 𝑛:

𝑨 ==
!"#

$

𝜎!𝒖!𝐯!%

𝑨# = 𝜎#𝒖#𝐯#% what is rank 𝑨# = ?

In general, rank 𝑨& = 𝑘

A) 1
B) n
C) depends on the matrix
D) NOTA

𝑨 =
⋮ … ⋮
𝒖" … 𝒖'
⋮ … ⋮

… 𝜎" 𝐯"( …
⋮ ⋮ ⋮
… 𝜎' 𝐯'( …

= 𝜎"𝒖"𝐯"( + 𝜎)𝒖)𝐯)( +⋯+ 𝜎'𝒖'𝐯'(



Rank of a matrix
For general rectangular matrix 𝑨 with dimensions 𝑚×𝑛, the reduced SVD is:

𝑨 =I
3G&

H

𝜎3𝒖3𝐯3(

𝑨 = 𝑼𝑹𝚺𝑹𝑽𝑹𝑻

𝑚×𝑛 𝑚×𝑘
𝑘×𝑘

𝑘 ×𝑛

𝑘 = min(𝑚, 𝑛)

𝜮 =
𝜎#

⋱
𝜎&

0
⋱

0 … 0
𝜮 =

𝜎#
⋱

𝜎&
0 0

⋱ ⋮
0

If 𝜎& ≠ 0 ∀𝑖, then rank 𝑨 = 𝑘 (Full rank matrix)

In general, rank 𝑨 = 𝒓, where 𝒓 is the number of non-zero singular values 𝜎&

𝑟 < 𝑘 (Rank deficient) 



• The rank of A equals the number of non-zero singular values which is 
the same as the number of non-zero diagonal elements in Σ.

• Rounding errors may lead to small but non-zero singular values in a 
rank deficient matrix, hence the rank of a matrix determined by the 
number of non-zero singular values is sometimes called “effective rank”.

• The right-singular vectors (columns of 𝑽) corresponding to vanishing 
singular values span the null space of A.

• The left-singular vectors (columns of 𝑼) corresponding to the non-zero 
singular values of A span the range of A.

Rank of a matrix



2) Pseudo-inverse
• Problem: if A is rank-deficient, 𝚺 is not be invertible

• How to fix it: Define the Pseudo Inverse

• Pseudo-Inverse of a diagonal matrix:

𝚺N 3 = N
&
O&
, if 𝜎3 ≠ 0

0, if 𝜎3 = 0

• Pseudo-Inverse of a matrix 𝑨:

𝑨N = 𝑽𝚺N𝑼𝑻



3) Matrix norms
The Euclidean norm of an orthogonal matrix is equal to 1

𝑼 ) = max
𝒙 !+"

𝑼𝒙 ) = max
𝒙 !+"

𝑼𝒙 𝑻(𝑼𝒙)= max
𝒙 !+"

𝒙𝑻𝒙 = max
𝒙 !+"

𝒙 ) = 1

The Euclidean norm of a matrix is given by the largest singular value

𝑨 ) = max
𝒙 !+"

𝑨𝒙 ) = max
𝒙 !+"

𝑼 𝚺 𝑽𝑻𝒙 ) = max
𝒙 !+"

𝚺 𝑽𝑻𝒙 ) =

= max
𝑽𝑻𝒙 !+"

𝚺 𝑽𝑻𝒙 ) = max
𝒚 !+"

𝚺 𝒚 ) =max(𝜎&)

Where we used the fact that 𝑼 ) = 1, 𝑽 ) = 1 and 𝚺 is diagonal

𝑨 ) = max 𝜎& = 𝜎#./ 𝜎'() is the largest singular value



4) Norm for the inverse of a matrix
The Euclidean norm of the inverse of a square-matrix is given by:

Assume here 𝑨 is full rank, so that 𝑨1& exists

𝑨0" ) = max
𝒙 !+"

(𝑼 𝚺 𝑽𝑻)0"𝒙 ) = max
𝒙 !+"

𝑽 𝚺0𝟏𝑼𝑻𝒙 )

Since 𝑼 ) = 1, 𝑽 ) = 1 and 𝚺 is diagonal then

𝑨0" )=
"

2#$%
𝜎'!$ is the smallest singular value



5) Norm of the pseudo-inverse matrix
The norm of the pseudo-inverse of a 𝑚 × 𝑛 matrix is:

𝑨3 )=
"
2&

where 𝜎4 is the smallest non-zero singular value. This is valid for any matrix, regardless 
of the shape or rank.

Note that for a full rank square matrix, 𝑨3 ) is the same as 𝑨0" ).

Zero matrix: If 𝑨 is a zero matrix, then 𝑨3 is also the zero matrix, and 𝑨3 )= 0



The condition number of a matrix is given by

𝑐𝑜𝑛𝑑) 𝑨 = 𝑨 ) 𝑨3 )

If the matrix is full rank: 𝑟𝑎𝑛𝑘 𝑨 = 𝑚𝑖𝑛 𝑚, 𝑛

𝑐𝑜𝑛𝑑) 𝑨 =
𝜎#./
𝜎#&'

where 𝜎#./ is the largest singular value and 𝜎#&' is the smallest singular value

If the matrix is rank deficient: 𝑟𝑎𝑛𝑘 𝑨 < 𝑚𝑖𝑛 𝑚, 𝑛

𝑐𝑜𝑛𝑑) 𝑨 = ∞

6) Condition number of a matrix



7) Low-Rank Approximation
Another way to write the SVD (assuming for now 𝑚 > 𝑛 for simplicity)

𝑨 =
⋮ … ⋮
𝒖# … 𝒖'
⋮ … ⋮

𝜎#
⋱

𝜎$
0
⋮
0

… 𝐯#% …
⋮ ⋮ ⋮
… 𝐯$% …

=
⋮ … ⋮
𝒖# … 𝒖$
⋮ … ⋮

… 𝜎# 𝐯#% …
⋮ ⋮ ⋮
… 𝜎$ 𝐯$% …

= 𝜎#𝒖#𝐯#% + 𝜎*𝒖*𝐯*% +⋯+ 𝜎$𝒖$𝐯$%

The SVD writes the matrix A as a sum of outer products (of left and right 
singular vectors).



𝜎" ≥ 𝜎) ≥ 𝜎*… ≥ 0

𝑨H = 𝜎&𝒖&𝐯&( + 𝜎)𝒖)𝐯)( +⋯+ 𝜎H𝒖H𝐯H(

Note that 𝑟𝑎𝑛𝑘 𝑨 = 𝑛 and 𝑟𝑎𝑛𝑘(𝑨H) = 𝑘 and the norm of the 
difference between the matrix and its approximation is

The best rank-𝒌 approximation for a 𝑚×𝑛 matrix 𝑨, (where 𝑘
≤ 𝑚𝑖𝑛(𝑚, 𝑛)) is the one that minimizes the following problem:

When using the induced 2-norm, the best rank-𝒌 approximation is given by:

7) Low-Rank Approximation (cont.)

𝑨 − 𝑨& * = 𝜎&+#𝒖&+#𝐯&+#% + 𝜎&+*𝒖&+*𝐯&+*% +⋯+ 𝜎$𝒖$𝐯$% * = 𝜎&+#



Example: Image compression

𝟓𝟎𝟎

𝟓𝟎𝟎

𝟓𝟎𝟎

𝟏𝟒𝟏𝟕

𝟏𝟒𝟏𝟕

𝟏𝟒𝟏𝟕

𝟓𝟎𝟎

𝟏𝟒𝟏𝟕



Example: Image compression

𝟓𝟎𝟎

𝟏𝟒𝟏𝟕

Image using rank-50 approximation



8) Using SVD to solve square system of 
linear equations

If 𝑨 is a 𝑛×𝑛 square matrix and we want to solve 𝑨 𝒙 = 𝒃, we can use 
the SVD for 𝑨 such that

𝑼 𝚺 𝑽𝑻𝒙 = 𝒃
𝚺 𝑽𝑻𝒙 = 𝑼𝑻𝒃

Solve: 𝚺 𝒚 = 𝑼𝑻𝒃 (diagonal matrix, easy to solve!)
Evaluate: 𝒙 = 𝑽 𝒚

Cost of solve: 𝑂 𝑛(
Cost of decomposition 𝑂 𝑛) (recall that SVD and LU have the same 
cost asymptotic behavior, however the number of operations - constant 
factor before 𝑛) - for the SVD is larger than LU)


