
Linear System of Equations: 
Conditioning





Numerical experiments
Input has uncertainties:

• Errors due to representation with finite precision
• Error in the sampling

Once	you	select	your	numerical	method	,	how	much	error	
should	you	expect	to	see	in	your	output?

Is	your	method	sensitive	to	errors	(perturbation)	in	the	input?

Demo “HilbertMatrix-ConditionNumber”



Solve ! " = $ for "

$ + & ∗ 10*+ (& ∈ 0,1 ) $ + & ∗ 10*0 (& ∈ 0,1 )

Is	your	method	sensitive	to	errors	(perturbation)	in	the	input?
How	much	noise	can	we	add	to	the	input	data?	
How	can	we	define	“little”	amount	of	noise?		Should	be	relative	with	the	
magnitude	of	the	data.	



Sensitivity of Solutions of Linear Systems
Suppose we start with a non-singular system of linear equations ! " = $.

We change the right-hand side vector $ (input) by a small amount Δ$.

How much the solution " (output) changes, i.e., how large is Δ"?

Output Relative error
Input Relative error = Δ" / "

Δ$ / $ = Δ" $
Δ$ "

! 5" = 6$ → ! 5" = !(" + Δ") = ($ + Δ$) → ! Δ" = Δ$

Output Relative error
Input Relative error = !;< Δ$ ! "

Δ$ " ≤ !;< Δ$ ! "
Δ$ "

Δ"
" ≤ !;< ! Δ$

$



Sensitivity of Solutions of Linear Systems
We can also add a perturbation to the matrix ! (input) by a small 
amount ", such that

(! + ") &' = )

and in a similar way obtain:

Δ'
' ≤ !,- ! "

!



Condition number
The condition number is a measure of sensitivity of solving a linear system 
of equations to variations in the input.

The condition number of a matrix !:

"#$% ! = !'( !

Recall that the induced matrix norm is given by

! = max, -( !,

And since the condition number is relative to a given norm, we should be 
precise and for example write:

"#$%. ! or "#$%/ !

Demo “HilbertMatrix-ConditionNumber”



Iclicker question
Give an example of a matrix that is very well-conditioned (i.e., 
has a condition number that is good for computation).  Select 
the best possible condition number(s) of a matrix?

A) #$%& ' < 0
B) #$%& ' = 0
C) 0 < #$%& ' < 1
D) #$%& ' = 1
E) #$%& ' = large numbers

Δ:
: ≤ #$%& ' Δ<

<



Condition number
Δ"
" ≤ $%&' ( Δ)

)

Small condition numbers mean not a lot of error amplification. Small 
condition numbers are good!

The identity matrix should be well-conditioned:

* = max" /0 * " = 1

It turns out that this is the smallest possible condition number:

$%&' ( = (20 ( ≥ (20( = * = 1

If (20 does not exist, then $%&' ( = ∞ (by convention)



Recall Induced Matrix Norms

! " = max' (
)*"

+
,)'

! - = max) (
'*"

+
,)'

! . = max/ 0/

0/ are the singular value of the matrix !

Maximum absolute column sum of the matrix !

Maximum absolute row sum of the matrix !



Iclicker question

A) 1
B) 50
C) 100
D) 200



About condition numbers
1. For any matrix !, "#$% ! ≥1

2. For the identity matrix ', "#$% ' = 1

3. For any matrix ! and a nonzero scalar +, "#$% +! = "#$% !

4. For any diagonal matrix ,, "#$% , = -./ 01
-12 01



“Little c” demo
Discuss what happens when c is ”close” to zero
What are the eigenvalues of triangular matrices?
We need to pivot!

Remarks:
The need for pivoting does not depend on whether the matrix is singular.
A non-singular matrix always has a solution.
A singular matrix may not have a solution, or may have infinitely many 
solutions.



Iclicker question
The need for pivoting depends on whether the matrix is 
singular.

A) True
B) False 

A)
B)
C)
D)



About condition numbers
1. For any matrix !, "#$% ! ≥1

2. For the identity matrix ', "#$% ' = 1

3. For any matrix ! and a nonzero scalar +, "#$% +! = "#$% !

4. For any diagonal matrix ,, "#$% , = -./ 01
-12 01

5. The condition number is a measure of how close a matrix is to being 
singular: a matrix with large condition number is nearly singular, 
whereas a matrix with a condition number close to 1 is far from being 
singular

6. The determinant of a matrix is NOT a good indicator is a matrix is near 
singularity



Condition Number of Orthogonal 
Matrices

What is the 2-norm condition number of an orthogonal matrix A?

!"#$ % = %'( ) % )= %* ) % ) = 1

That means orthogonal matrices have optimal conditioning.

They are very well-behaved in computation.



Residual versus error
Our goal is to find the solution ! to the linear system of equations " ! = $

Let us recall the solution of the perturbed problem

%! = ! + Δ!

which could be the solution of 

" %! = $ + Δ$ , " + ) %! = $, (" + )) %! = $ + Δ$

And the error vector as 
, = Δ! = %! − !

We can write the residual vector as 
. = $ − " %!



Relative residual: !
" # (How well the solution satisfies 

the problem)

Relative error: $## (How close the approximated 
solution is from the exact one)

When solving a system of linear equations via LU with 
partial pivoting, the relative residual is guaranteed to be 
small!

Demo “Rule of Thumb on Conditioning”



Residual versus error
Let us first obtain the norm of the error:

Δ" = $" − " = &'(& $" − &'() = &'((& $" − )) = −&'( ,

Δ"
" ≤ &'( ,

" = &'( & ,
& "

Δ"
" ≤ ./01(&) ,

& "

For well-conditioned matrices, small relative residual 
implies small relative error.



Residual versus error
Without loss of generality, let us assume that the perturbed solution 
!" satisfies

# + % !" = '

Then the residual vector becomes
( = ' − # !" = ' − (' − % !") = % !"

And the norm of the residual is ( = % !" ≤ % !" . After 
normalizing the residual norm, we obtain

(
# !" ≤ %

# ≤ - ./

Where - is large without pivoting and small with partial pivoting. 
Therefore, Gaussian elimination with partial pivoting yields small relative 
residual regardless of conditioning of the system.



Rule of thumb for conditioning
Suppose we want to find the solution ! to the linear system of equations 
" ! = $ using LU factorization with partial pivoting and backward/forward 
substitutions.

Suppose we compute the solution  %!.

If the entries in " and $ are accurate to S decimal digits, 

and '()* " = +,-, 

then the elements of the solution vector %! will be accurate to about 

. −0
decimal digits



Iclicker question

A) 3
B) 10
C) 13
D) 16
E) 32



Sparse Matrices
Some type of matrices contain many zeros. 
Storing all those zero entries is wasteful!

How can we efficiently store large 
matrices without storing tons of zeros?

• Sparse matrices (vague definition): matrix with few non-zero entries.
• For practical purposes: an !×# matrix is sparse if it has $ min !, #

non-zero entries.
• This means roughly a constant number of non-zero entries per row and 

column.
• Another definition: “matrices that allow special techniques to take advantage 

of the large number of zero elements” (J. Wilkinson)



Sparse Matrices: Goals

• Perform standard matrix computations economically, i.e., 
without storing the zeros of the matrix.

• For typical Finite Element and Finite Difference matrices, the number of 
non-zero entries is ! "



Sparse Matrices: MP example



Sparse Matrices
EXAMPLE:

Number of operations required to add two square dense matrices:
! "#

Number of operations required to add two sparse matrices $ and %:
! nnz $ + nnz(%)

where nnz , = number of non-zero elements of a matrix ,



Popular Storage Structures



Dense (DNS)

!"ℎ$%& = ()*+,, ).+/)

• Simple
• Row-wise
• Easy blocked formats
• Stores all the zeros

Row 0 Row 1 Row 2 Row 3



Coordinate (COO) 

• Simple
• Does not store the zero elements
• Not sorted
• row and col: array of integers
• data: array of doubles



Iclicker question

How many integers are stored in COO format 
(! has dimensions "×")?

A) ""$
B) "
C) 2 ""$
D) "&
E) 2 "



Iclicker question

A) 56 bytes
B) 72 bytes
C) 96 bytes
D) 120 bytes
E) 144 bytes



Compressed Sparse Row (CSR)

Row 0 Row 1 Row 2 Row 3 Row 4

! 1 # 3 4 & 6 7 8 * 10 ,,

Row offsets --.(0)



Compressed Sparse Row (CSR)

• Does not store the zero elements
• Fast arithmetic operations between sparse matrices, and fast matrix-

vector product
• col: contain the column indices (array of !!" integers)
• data: contain the non-zero elements (array of !!" doubles)
• rowptr: contain the row offset (array of ! + 1 integers)



Example - CSR format


