
Singular Value Decomposition
(applications)



1) Determining the rank of a matrix
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Suppose 𝑨 is a𝑚×𝑛 rectangular matrix where𝑚 > 𝑛:
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Rank of a matrix
For general rectangular matrix 𝑨 with dimensions 𝑚×𝑛, the reduced SVD is:

𝑨 = 𝑼𝑹𝚺𝑹𝑽𝑹𝑻



• The rank of A equals the number of non-zero singular values which is 
the same as the number of non-zero diagonal elements in Σ.

• Rounding errors may lead to small but non-zero singular values in a 
rank deficient matrix, hence the rank of a matrix determined by the 
number of non-zero singular values is sometimes called “effective rank”.

• The right-singular vectors (columns of 𝑽) corresponding to vanishing 
singular values span the null space of A.

• The left-singular vectors (columns of 𝑼) corresponding to the non-zero 
singular values of A span the range of A.

Rank of a matrix



2) Pseudo-inverse
• Problem: if A is rank-deficient, 𝚺 is not be invertible

• How to fix it: Define the Pseudo Inverse

• Pseudo-Inverse of a diagonal matrix:

𝚺& ' = %
(
)!
, if 𝜎' ≠ 0

0, if 𝜎' = 0

• Pseudo-Inverse of a matrix 𝑨:

𝑨& = 𝑽𝚺&𝑼𝑻



3) Matrix norms
The Euclidean norm of an orthogonal matrix is equal to 1
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The Euclidean norm of a matrix is given by the largest singular value
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4) Norm for the inverse of a matrix
The Euclidean norm of the inverse of a square-matrix is given by:

Assume here 𝑨 is full rank, so that 𝑨+( exists

𝑨+! % = max
𝒙 !'!

(𝑼 𝚺 𝑽𝑻)+!𝒙 %

𝑨+! % = max
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𝑽 𝚺+𝟏𝑼𝑻𝒙 %

Since 𝑼 % = 1, 𝑽 % = 1 and 𝚺 is diagonal then

𝑨+! %=
!
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𝜎#." is the smallest singular value



5) Norm of the pseudo-inverse matrix
The norm of the pseudo-inverse of a 𝑚 × 𝑛 matrix is:

𝑨/ = 𝑽𝚺/𝑼𝑻

𝑨/ %=
!
-&

where 𝜎0 is the smallest non-zero singular value. This is valid for any matrix, regardless 
of the shape or rank.

Note that for a full rank square matrix, 𝑨/ % is the same as 𝑨+! %.

Zero matrix: If 𝑨 is a zero matrix, then 𝑨/ is also the zero matrix, and 𝑨/ %= 0



The condition number of a matrix is given by

𝑐𝑜𝑛𝑑% 𝑨 = 𝑨 % 𝑨/ %

If the matrix is full rank: 𝑟𝑎𝑛𝑘 𝑨 = 𝑚𝑖𝑛 𝑚, 𝑛

𝑐𝑜𝑛𝑑% 𝑨 =
𝜎#12
𝜎#."

where 𝜎#12 is the largest singular value and 𝜎#." is the smallest singular value

If the matrix is rank deficient: 𝑟𝑎𝑛𝑘 𝑨 < 𝑚𝑖𝑛 𝑚, 𝑛

𝑐𝑜𝑛𝑑% 𝑨 = ∞

6) Condition number of a matrix



7) Low-Rank Approximation
We will again use the SVD to write the matrix A as a sum of outer 
products (of left and right singular vectors) – here for 𝑚 > 𝑛 without 
loss of generality:
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𝜎! ≥ 𝜎" ≥ 𝜎#… ≥ 0

𝑨6 = 𝜎(𝒖(𝐯(7 + 𝜎8𝒖8𝐯87 +⋯+ 𝜎6𝒖6𝐯67

The best rank-𝒌 approximation for a 𝑚×𝑛 matrix 𝑨, (where 
𝑘 ≤ 𝑚𝑖𝑛(𝑚, 𝑛)) is the one that minimizes the following problem:

When using the induced 2-norm, the best rank-𝒌 approximation is given by:

7) Low-Rank Approximation (cont.)



Example: Image compression

𝟓𝟎𝟎

𝟏𝟒𝟏𝟕

Image using rank-50 approximation



8) Using SVD to solve square system of 
linear equations
If 𝑨 is a 𝑛×𝑛 square matrix and we want to solve 𝑨 𝒙 = 𝒃, we can use 
the SVD for 𝑨 such that


