Solving Linear Least Squares with SVD

What we have learned so far...

\boldsymbol{A} is a $m \times n$ matrix where $m>n$ (more points to fit than coefficient to be determined)

Normal Equations: $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$

- The solution $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ is unique if and only if $\operatorname{rank}(\mathbf{A})=n$
(\boldsymbol{A} is full column rank)
- $\operatorname{rank}(\mathbf{A})=n \rightarrow$ columns of \boldsymbol{A} are linearly independent $\rightarrow n$ non-zero singular values $\rightarrow \boldsymbol{A}^{T} \boldsymbol{A}$ has only positive eigenvalues $\rightarrow \boldsymbol{A}^{T} \boldsymbol{A}$ is a symmetric and positive definite matrix $\rightarrow \boldsymbol{A}^{T} \boldsymbol{A}$ is invertible

$$
\boldsymbol{x}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-\mathbf{1}} \boldsymbol{A}^{T} \boldsymbol{b}
$$

- If $\operatorname{rank}(\mathbf{A})<n$, then \boldsymbol{A} is rank-deficient, and solution of linear least squares problem is not unique.

Condition number for Normal Equations

Finding the least square solution of $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ (where \boldsymbol{A} is full rank matrix) using the Normal Equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

has some advantages, since we are solving a square system of linear equations with a symmetric matrix (and hence it is possible to use decompositions such as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the matrix.

$$
\operatorname{cond}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=(\operatorname{cond}(\boldsymbol{A}))^{2}
$$

How can we solve the least square problem without squaring the condition of the matrix?

SVD to solve linear least squares problems

\boldsymbol{A} is a $m \times n$ rectangular matrix where $m>n$, and hence the SVD decomposition is given by:

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{m} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & 0 \\
& & \vdots \\
& & 0
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right)
$$

We want to find the least square solution of $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, where $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$
or better expressed in reduced form: $\boldsymbol{A}=\boldsymbol{U}_{R} \boldsymbol{\Sigma}_{\boldsymbol{R}} \boldsymbol{V}^{\boldsymbol{T}}$

Recall Reduced SVD $m>n$

Shapes of the Reduced SVD

Suppose you compute a reduced SVD $A=U \Sigma V^{T}$ of a 10×14 matrix A. What will the shapes of U, Σ, and V be? Hint: Remember the transpose on V !

SVD to solve linear least squares problems

$$
\begin{aligned}
& A=U_{R} \Sigma_{R} V^{T} \\
& \boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots . & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \ldots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& \underset{\underline{A}}{\underline{x}}=\underline{b} \longrightarrow{\underset{\underline{A}}{ }}_{\top}^{A} \underline{x}=\underline{A}^{\top} \underline{b} \\
& \left(\underline{U_{R}} \sum_{R} V^{T}\right)^{\top}\left(U_{R} \sum_{R} V_{=}^{T}\right) \underset{\sim}{x}=\left(U_{R} \sum_{R} V^{T}\right)^{\top} \underset{\sim}{b} \\
& \left(V^{\top}\right)^{\top} \sum_{R}^{\top} \underbrace{U_{R}^{\top} U_{R} \Sigma_{R} V^{\top} x=\left(V^{\top}\right)^{\top} \Sigma_{R}^{\top} U_{R}^{\top} b} \\
& V \Sigma_{R}^{\top} \Sigma_{R} V^{\top} x=V \Sigma_{R}^{\top} U_{R}^{\top} b \\
& \Sigma_{R}^{-1}=\text { ? } \\
& V \Sigma_{R}^{2} V^{\top} x=V \Sigma_{R} U_{R}^{\top} b \Longrightarrow \Sigma_{R}^{2} V^{\top} x=\Sigma_{R} U_{R}^{\top} b
\end{aligned}
$$

(1) Full rank $A \quad A_{m \times n}: \operatorname{rank}(A)=n$
(2) Rank deficient $A_{m \times n}: \operatorname{rank}(A)=r<n$
$\Sigma_{R}^{2} V^{\top} x=\Sigma_{R} U_{R}^{\top} b \rightarrow$ solution is not unique
(1) Find $\underset{\sim}{x}$ sit $\min _{x}\|A x-b\|_{2}^{2}$
(t) $\min _{x}\|x\|_{2} r$

$$
\sum_{R}^{2} V^{\top} x=\sum_{R} U_{R}^{\top} b \quad \operatorname{rank}(A)=r<n
$$

Change of variable $y=V^{\top} x>x=V y$

In summary:

$$
y_{i}=\left\{\begin{array}{ll}
\frac{u_{i}^{\top} b}{\sigma_{i}}, & \text { if } i=1, \ldots, r \\
0, & \text { if } i=r+1, \ldots, n
\end{array}\right\} y
$$

Compute $\underset{\sim}{x} \rightarrow \underset{\sim}{x}=\underset{=}{v} y=\sum_{i=1}^{n}\left(y_{i}\right) \underset{\sim}{v}$

$$
\begin{gathered}
\underset{\sim}{x}=\sum_{i=1}^{n}\left(\frac{u_{i}^{\top} b}{\sigma_{i}}\right) v_{i} \\
\sigma_{i} \neq 0
\end{gathered}
$$

$$
A \underline{x}=\underline{b}
$$

A is rank deficient

Example:

Consider solving the least squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, where the singular value decomposition of the matrix $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{X}$ is:

$$
\left[\begin{array}{cccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
14 & 0 & 0 \\
0 & 14 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{x} \cong\left[\begin{array}{c}
12 \\
9 \\
9 \\
10
\end{array}\right]
$$

Determine $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$

Example

Suppose you have $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}$ calculated. What is the cost of solving

$$
\min _{\boldsymbol{x}}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} ?
$$

A) $O(n)$
B) $O\left(n^{2}\right)$
C) $O(\mathrm{mn})$
D) $O(\mathrm{~m})$
E) $O\left(m^{2}\right)$

