
Singular Value Decomposition
(matrix factorization)



Singular Value Decomposition
The SVD is a factorization of a 𝑚×𝑛 matrix into

𝑨 = 𝑼 𝚺 𝑽𝑻

where 𝑼 is a 𝑚×𝑚 orthogonal matrix, 𝑽𝑻 is a 𝑛×𝑛 orthogonal matrix and 𝚺
is a 𝑚×𝑛 diagonal matrix.

For a square matrix (𝒎 = 𝒏):

𝑨 =
⋮ … ⋮
𝒖& … 𝒖'
⋮ … ⋮
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⋮ … ⋮
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⋮ … ⋮
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𝜎& ≥ 𝜎) ≥ 𝜎*…



Reduced SVD

𝑨 = 𝑼 𝚺 𝑽𝑻 =
⋮ … ⋮ … ⋮
𝒖" … 𝒖# … 𝒖$
⋮ … ⋮ … ⋮
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What happens when 𝑨 is not a square matrix?

1) 𝒎 > 𝒏



Reduced SVD

𝑨 = 𝑼 𝚺 𝑽𝑻 =
⋮ … ⋮
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2) 𝒏 > 𝒎



Let’s take a look at the product 𝚺𝑻𝚺, where 𝚺 has the singular values of a 𝑨, 
a 𝑚×𝑛 matrix.
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Assume 𝑨 with the singular value decomposition 𝑨 = 𝑼 𝚺 𝑽𝑻. Let’s take a 
look at the eigenpairs corresponding to 𝑨𝑻𝑨:



In a similar way,

𝑨



How can we compute an SVD of a matrix A ?
1. Evaluate the 𝑛 eigenvectors 𝐯0 and eigenvalues 𝜆0 of 𝑨𝑻𝑨
2. Make a matrix 𝑽 from the normalized vectors 𝐯0. The columns are called 

“right singular vectors”.

𝑽 =
⋮ … ⋮
𝐯& … 𝐯'
⋮ … ⋮

3. Make a diagonal matrix from the square roots of the eigenvalues.

𝚺 =
𝜎&

⋱
𝜎'

𝜎0= 𝜆0 and 𝜎&≥ 𝜎) ≥ 𝜎*…

4. Find  𝑼: 𝑨 = 𝑼 𝚺 𝑽𝑻 ⟹𝑼𝚺 = 𝑨 𝑽. The columns are called the “left 
singular vectors”.



• A matrix is positive definite if 𝒙𝑻𝑩𝒙 > 𝟎 for ∀𝒙 ≠ 𝟎
• A matrix is positive semi-definite if 𝒙𝑻𝑩𝒙 ≥ 𝟎 for ∀𝒙 ≠ 𝟎

Singular values are always non-negative



Cost of SVD
The cost of an SVD is proportional to 𝒎𝒏𝟐 + 𝒏𝟑where the constant of 
proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.

𝐶123 = 𝛼 𝑚 𝑛) + 𝑛* = 𝑂 𝑛*
𝐶.45.45 = 𝑛*= 𝑂 𝑛*
𝐶67 = 2𝑛*/3 = 𝑂 𝑛*



SVD summary:
• The SVD is a factorization of a 𝑚×𝑛 matrix into 𝑨 = 𝑼 𝚺 𝑽𝑻 where 𝑼 is a 𝑚×𝑚

orthogonal matrix, 𝑽𝑻 is a 𝑛×𝑛 orthogonal matrix and 𝚺 is a 𝑚×𝑛 diagonal matrix.

• In reduced form: 𝑨 = 𝑼𝑹𝚺𝑹𝑽𝑹𝑻, where 𝑼𝑹 is a 𝑚×𝑘 matrix, 𝚺𝑹 is a 𝑘 ×𝑘 matrix, 
and 𝑽𝑹 is a 𝑛×𝑘 matrix, and 𝑘 = min(𝑚, 𝑛).

• The columns of 𝑽 are the eigenvectors of the matrix 𝑨𝑻𝑨, denoted the right singular 
vectors.

• The columns of 𝑼 are the eigenvectors of the matrix 𝑨𝑨𝑻, denoted the left singular 
vectors.

• The diagonal entries of 𝚺𝟐 are the eigenvalues of 𝑨𝑻𝑨. 𝜎&= 𝜆& are called the singular 
values.

• The singular values are always non-negative (since 𝑨𝑻𝑨 is a positive semi-definite matrix, 
the eigenvalues are always 𝜆 ≥ 0)


