Singular Value Decomposition (matrix factorization)

Let's take a look at the product $\Sigma^T \Sigma$, where Σ has the singular values of a A, a $m \times n$ matrix.

Assume **A** with the singular value decomposition $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{T}$. Let's take a look at the eigenpairs corresponding to $A^T A$: $(x,\lambda) | A^{T}A x = \lambda X$ $A'A = (U \geq V^{T})^{T} (U \geq V^{T})$ $(ABC)^{T} = C^{T}B^{T}A^{T}$ $= (V^{\mathsf{T}})^{\mathsf{T}} \boldsymbol{\boldsymbol{\Sigma}}^{\mathsf{T}} \boldsymbol{\boldsymbol{\boldsymbol{U}}}^{\mathsf{T}} \boldsymbol{\boldsymbol{\boldsymbol{U}}} \boldsymbol{\boldsymbol{\boldsymbol{\Sigma}}} \boldsymbol{\boldsymbol{\boldsymbol{V}}}^{\mathsf{T}}$ $= V \Sigma^{T} \Sigma \Sigma^{T} \Sigma^{2} [0]^{2} G_{2}^{2}] = \bigcup^{T} = \bigcup^{T}$ $= V \Sigma^{T} \Sigma V^{T}$ Diagonalization: $\mathbf{B} = \mathbf{X} \mathbf{D} \mathbf{X}$ A A = V ⇒ columns of (V) are the eigenvectors of A'A ⇒diagonal entries of ≥ are the eigenvalues of ATA $(X, \lambda = uig(A^T A))$ $\lambda_i = \sigma_i^2$

In a similar way, <u>A'A</u> $AA' = (U\Sigma V^{T})(U\Sigma V_{A}^{T})^{T}$ $= U \Sigma V^{\mathsf{T}} (V^{\mathsf{T}})^{\mathsf{T}} \Sigma^{\mathsf{T}} U^{\mathsf{T}}$ V^{-'} = V^T = UZ VTV ZTUT = UZZ UT B=XDX $AA^{T} = UZ^{2}U^{T}$ \rightarrow columns of U are the eigenvetors of AA^T

How can we compute an SVD of a matrix A? la.eig(ATA)

- Evaluate the *n* eigenvectors \mathbf{v}_i and eigenvalues λ_i of $\mathbf{A}^T \mathbf{A}$ 1.
- Make a matrix V from the normalized vectors \mathbf{v}_i . The columns are called 2. "right singular vectors".

$$V = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}$$

Make a diagonal matrix from the square roots of the eigenvalues. 3. singular values $U_i^2 = \lambda_i$ $\sigma_i = \sqrt{\lambda_i}$ and $\sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$

Find $U: A = U \Sigma V^T \implies U \Sigma = A V$. The columns are called the "left" 4. singular vectors".

SVD summary:

- The SVD is a factorization of a $m \times n$ matrix into $A = U \Sigma V^T$ where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.
- In reduced form: $A = U_R \Sigma_R V_R^T$, where U_R is a $m \times k$ matrix, Σ_R is a $k \times k$ matrix, and V_R is a $n \times k$ matrix, and $k = \min(m, n)$.
- The columns of V are the eigenvectors of the matrix $A^T A$, denoted the right singular vectors.
- The columns of U are the eigenvectors of the matrix AA^T , denoted the left singular vectors.
- The diagonal entries of Σ^2 are the eigenvalues of $A^T A$. $\sigma_i = \sqrt{\lambda_i}$ are called the singular values.
- The singular values are always non-negative (since $A^T A$ is a positive semi-definite matrix, the eigenvalues are always $\lambda \ge 0$)