Nonlinear Equations

Nonlinear system of equations

Robotic arms

(d) Jointed-arm

https:/ / www.youtube.com/watch?v=NRgNDlVtmz0 (Robotic arm 1)
https: / / www.youtube.com/watch?v=9DqRkLQ5Sv8 (Robotic arm 2)
https:/ / www.youtube.com/watch?v=DZ ocmY8xEI (Blender)

Nonlinear system of equations
Goal: Solve $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$ for $\boldsymbol{f}: \underline{\mathcal{R}}^{n} \rightarrow \mathcal{R}^{n}$

$$
\begin{aligned}
& \underset{\sim}{f}(\underset{\sim}{x})=\underset{\sim}{0} \\
& \underset{\sim}{f}(\underset{\sim}{x})=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

Suppose

$$
\left\{\begin{array}{l}
x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{3}=4 \\
2 x_{1}+3 x_{2}=5
\end{array} \Longrightarrow \begin{array}{l}
f_{1}=-x_{1}^{2}-2 x_{1} x_{2}-x_{2}^{3}+4=0 \\
f_{2}=-2 x_{1}-3 x_{2}+5=0
\end{array}\right.
$$

Newton's method (ND)
Approximate the nonlinear function $\boldsymbol{f}(\boldsymbol{x})$ by a linear function using Taylor expansion:

$$
\begin{aligned}
& {\underset{U}{\prime \prime}}_{f(x+s)}^{f} \cong \underbrace{\| \prime}_{0} \\
& \underset{\sim}{f}(\underline{x})+\underset{J}{J}(x) \underline{s}=\underset{\sim}{0} \\
& J(x) \underline{s}=-\underline{f}(\underline{x}) \\
& x_{0}=\text { initial vector } \\
& {\underset{\sim}{x}}_{k+1}=\underline{x}_{k}+\frac{s}{4}
\end{aligned}
$$

\rightarrow solve for \leqq Linear system of equation

Newton's method

$$
f(x)=0
$$

Algorithm:
x_{0} : initial guess
for $i=1,2, \ldots$
$n<$ evaluate $J\left(x_{k}\right)=J$ evaluate $f\left(x_{n}\right)=f$
$O\left(n^{3}\right)$ solve $J_{=} s=-f \rightarrow$ Find s update $\underline{x}_{k+1}=\underline{x}_{k}+\underline{s}$
Convergence:

- Typically has quadratic convergence
- Drawback: Still only locally convergent

Cost:

- Main cost associated with computing the Jacobian matrix and solving the Newton step.

Example
Consider solving the nonlinear system of equations

$$
\underset{\sim}{f}=\left[\begin{array}{l}
2 y+x-2 \\
x^{2}+4 y^{2}-4
\end{array}\right]
$$

$$
\| \begin{gathered}
2=2 y+x \\
4=x^{2}+4 y^{2}
\end{gathered}
$$

What is the result of applying one iteration of Newton's method with the following initial

$$
\begin{aligned}
& \text { guess? } \\
& \underset{\sim}{x}{\underset{\sim}{x}}_{1}={\underset{\sim}{x}}_{0}+\underset{\sim}{s}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right] \\
& x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \underset{\sim}{J}=\left[\begin{array}{ll}
1 & 2 \\
2 x & 8 y
\end{array}\right] \\
& f\left(x_{0}\right)=\left[\begin{array}{l}
-1 \\
-3
\end{array}\right] \quad J\left(x_{0}\right)=\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]} \\
& s_{1}+2 s_{2}=1 \\
& 2 s_{1}=3 \longrightarrow s_{1}=1.5 \\
& 2 s_{2}=1-1.5=-0.5 \\
& s_{2}=-0.25
\end{aligned}
$$

Newton's method

$$
\boldsymbol{x}_{0}=\text { initial guess }
$$

For $k=1,2, \ldots$
Evaluate $\mathbf{J}=\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$
Evaluate $\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$
Factorization of Jacobian (for example $\mathbf{L U}=\boldsymbol{J}$)
Solve using factorized J (for example $\mathbf{L} \mathbf{U} \boldsymbol{s}_{k}=-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$
Update $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{k}$

Newton's method - summary

\square Typically quadratic convergence (local convergence)
\square Computing the Jacobian matrix requires the equivalent of n^{2} function evaluations for a dense problem (where every function of $\boldsymbol{f}(\boldsymbol{x})$ depends on every component of \boldsymbol{x}).
\square Computation of the Jacobian may be cheaper if the matrix is sparse.
The cost of calculating the seep \boldsymbol{s} is $O\left(n^{3}\right)$ for d dense Jacobian matrix (Factorization + Solve)
\square If the same Jacobian matri $\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$ is reused for several consecutive iterations, the convergence will suffer accordingly (trade-off between cost per iteration and number of iterations needed for convergence)

Inverse Kinematics

$$
x_{1} y, \beta \longrightarrow \theta_{1}, \theta_{2}, \theta_{3}
$$

$$
c=\sqrt{x^{2}+y^{2}}
$$

$a_{1} b$ given $\sqrt{ } a_{1}=\theta_{1}-a_{2}$

$$
\theta_{1}=\alpha_{1}+\alpha_{2}
$$

$\alpha_{2}=\tan ^{-1}(y / x)$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos \theta_{2} \rightarrow f_{1}=c^{2}-a^{2}-b^{2}+2 a b \cos \theta_{2}=0 \\
& b^{2}=a^{2}+c^{2}-2 a c \cos \alpha_{1} \rightarrow f_{2}=b^{2}-a^{2}-c^{2}+2 a c \cos \left(\theta_{1}-\alpha_{2}\right)=0
\end{aligned}
$$

$$
\left(186-\alpha_{1}-\theta_{2}\right)+\theta_{3}+\beta+g 0+\left(96-\alpha_{2}\right)=360
$$

$$
\begin{aligned}
& \left(186-\alpha_{1}-\theta_{2}\right)+\theta_{3}+\beta+\alpha_{1}+\alpha_{1} \\
& -\alpha_{1}-\theta_{2}+\theta_{3}+\beta-\alpha_{2}=0 \\
& -\left(\theta_{1}-\alpha_{1}\right)-\theta_{2}+\theta_{3}+\beta-\theta_{1}-\theta_{2}+\theta_{3}+\beta=0
\end{aligned}
$$

