Nonlinear Equations

How can we solve these equations?

- Spring force:
$F=k x$

What is the displacement when $F=2 \mathrm{~N}$?

$F=k x$

$$
x=\frac{F}{k}=\frac{2 \mathrm{~N}}{40 \mathrm{~N} / \mathrm{m}}=0.05 \mathrm{~m}
$$

$x^{\sim}=0.05 \mathrm{~m}$

How can we solve these equations?

- Drag force:
$F=0.5{\underset{\Xi}{d}}_{C_{d}} \rho A v^{2}=\mu_{d} v^{2}$
What is the velocity when $F=20 \mathrm{~N}$?

$$
\begin{aligned}
& F=\mu v^{2} \Rightarrow \underbrace{F-\mu v^{2}}_{f(v)=0}=0 \\
& f(v)=\mu_{d} v^{2}-F=0
\end{aligned}
$$

Find the root (zero) of the nonlinear equation $f(v)$

Nonlinear Equations in 1D

Goal: Solve $f(x)=0$ for $f \mathcal{R} \rightarrow \mathcal{R}$

$$
f(\sigma)=0
$$

root of f Often called Root Finding

* Define interval that

Bisection method

Bisection method

$$
\begin{aligned}
& t_{0}=|b-a|=10 \\
& t_{1}=\frac{|b-a|}{2}=\frac{t_{0}}{2} \\
& t_{2}=\frac{t_{1}}{2}=\frac{t_{0}}{2.2} \\
& t_{3}=\frac{t_{2}}{2}=\frac{t_{0}}{8}
\end{aligned}
$$

$$
t_{k}=\frac{t_{0}}{2^{k}}
$$

$t_{0}=10$

* every iteration, the interval is divided by 2 !

Convergence

An iterative method converges with rate r if:

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 0<C<\infty \quad r=1 \text { : linear convergence }
$$

Linear convergence gains a constant number of accurate digits each step (and $C<1$ matters!)

For example: Power Iteration

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{\|\left(e_{k+1} \|\right.}{\left\|e_{k}\right\|^{r=1}}=\left|\frac{\lambda_{2}}{\lambda_{l}}\right|=\text { constant }=\frac{c}{4} \Longrightarrow \text { linear convergnce } \\
& \forall \lambda_{2} \sim \lambda_{1} \rightarrow \text { constant } \approx 1 \longrightarrow \text { slow convergence } \\
& \lambda_{1}=\alpha \lambda_{2} \longrightarrow c=\frac{1}{\alpha} \longrightarrow \text { faster convergence as } \\
& \alpha \text { increases }
\end{aligned}
$$

Convergence

An iterative method converges with rate r if:
$\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 0<C<\infty$
$r=1$: linear convergence
$r>1$: superlinear convergence $1<r<2$
$r=2$: quadratic convergence

Linear convergence gains a constant number of accurate digits each step (and $C<1$ matters!)

Quadratic convergence doubles the number of accurate digits in each step (however it only starts making sense once $\left\|e_{k}\right\|$ is small (and C does not matter much)

Convergence x^{*} is the root

- The bisection method does not estimate x_{k}, the approximation of the desired root x. It instead finds an interval smaller than a given
$f(x)$ tolerance that contains the root.

$$
\begin{aligned}
& 1 \quad t_{k}<\text { tola } \longrightarrow \text { stop } \\
& \frac{\text { (to }}{2^{k} R}<\text { col } \\
& \text { error }=t_{k} \\
& \frac{x\left|e_{k+1}\right|}{\left|e_{k}\right|^{r}}=\frac{|b-a| / 2^{k+1}}{|b-a| / 2^{k}}=\frac{1}{2}=c \\
& r=1 \\
& C=\frac{1}{2} \Rightarrow \text { linear } \\
& \text { convergence! }
\end{aligned}
$$

in general: $t_{k}<$ bol
Example:
Consider the nonlinear equation

$$
f(x)=0.5 x^{2}-2{\frac{2}{k} \operatorname{cog}_{2}\left(\frac{|b-a|}{b-1}\right)}^{\left.k>\log ^{k}\right)}
$$

and solving $f(x)=0$ using the Bisection Method. For each of the initial intervals below, how many iterations are required to ensure the root is

$$
\begin{aligned}
& \text { accurate within } 2^{-4} \text { ? } \\
& \text { A) } \begin{array}{l}
f(a) \quad f(b) \\
{[-10,-1.8]}
\end{array} \\
& f(a) . f(b)<0 \rightarrow 0 k! \\
& \int k_{1}>\log _{2}\left(\frac{8.2}{2^{-4}}\right) \cong 7.3 \\
& \text { (} 8 \text { iterations) } \\
& \begin{array}{l}
\text { BR } 1 \geq 3, \geq \geq 2] f(a) \cdot f(b) \geq 0 \rightarrow \text { not or! } \int()_{k}>\log _{2}\left(\frac{5.9}{2^{-4}}\right) \approx 6.56 \\
\text { C) }[-4,1.9] f(a) . f(b)<0 \rightarrow \text { ok! iterations) }
\end{array}
\end{aligned}
$$

Bisection method

$f(a), f(b), f(m)$ new fec evaluation

Algorithm:

1. Take two points, a and b, on each side of the root such that $f(a)$ and $f(b)$ have opposite signs.
2. Calculate the midpoint $m=\frac{a+b}{2}$
3. Evaluate $f(m)$ and use m to replace either a or b, keeping the signs of the endpoints opposite.

Bisection Method - summary

\square The function must be continuous with a root in the interval $[a, b]$
\square Requires only one function evaluations for each iteration!

- The first iteration requires two function evaluations.
\square Given the initial internal $[a, b]$, the length of the interval after k iterations is $\frac{b-a}{2^{k}}$
\square Has linear convergence

Newton's method

- Recall we want to solve $f(x)=0$ for $f: \mathcal{R} \rightarrow \mathcal{R}$
- The Taylor expansion: \downarrow nonlinear linear approximation of $f(x)$
gives a linear approximation for the nonlinear function f near x_{k}.

Example

$$
\begin{aligned}
& x_{1}=? \\
& x_{0}=0
\end{aligned}
$$

Consider solving the nonlinear equation

$$
5=2.0 e^{x}+x^{2}
$$

$$
\Rightarrow \Rightarrow f(x)=2 e^{x}+x^{2}-5=0
$$

What is the result of applying one iteration of Newton's method for solving nonlinear equations with initial starting guess $x_{0}=0$, i.e. what is x_{1} ?
A) -2

$$
x_{k+1}=x_{k}+h \quad h=-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

B) 0.75
C) -1.5

$$
f^{\prime}(x)=2 e^{x}+2 x
$$

D) 1.5
E) 3.0

$$
\begin{array}{cc}
x_{0} \Rightarrow f\left(x_{0}\right)=2-5=-3 \\
f^{\prime}\left(x_{0}\right)=2 \\
x_{1}=x_{0}+h=0+1.5 & \Rightarrow \frac{-f}{f^{\prime}}=\frac{-(-3)}{2} \\
h=1.5
\end{array}
$$

Newton's Method - summary

Must be started with initial guess close enough to root (convergence is only local). Otherwise it may not converge at all.
\square Requires function and first derivative evaluation at each iteration (think about two function evaluations)
\square Typically has quadraticenvence

$$
\lim _{k \rightarrow \infty}\left(\frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{2}}=C, \quad \begin{array}{r}
\\
r=2
\end{array}\right.
$$

\square What can we do when the derivative evaluation is too costly (or difficult to evaluate)?

Secant method $\quad d f \Rightarrow$ approximation for $f^{\prime}(x)$
Also derived from Taylor expansion, but instead of using $f^{\prime}\left(x_{k}\right)$, it approximates the tangent with the secant line:

$$
\begin{aligned}
& \text { approximates the tangent with the secant line: } \\
& x_{k+1}=x_{k}-f\left(x_{k}\right) / \frac{f^{\prime}\left(x_{k}\right)}{5} \longrightarrow x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{d f\left(x_{k}\right)}
\end{aligned}
$$

Secant Method - summary

Still local convergence
\square Requires only one function evaluation per iteration (only the first iteration requires two function evaluations)
\square Needs two starting guesses
\square Has slower convergence than Newton's Method - superlinear convergence

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 1<r<2, ~(f)
$$

1D methods for root finding:

Method	Update	Convergence	Cost
Bisection	Check signs of $f(a)$ and $f(b)$	Linear $(r=1$ and $\mathrm{c}=0.5)$	One function evaluation per iteration, no need to compute derivatives
Secant	$x_{k+1}=x_{k}+h$ $h=-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$	Superlinear $(r=1.618)$, local convergence properties, convergence depends on the initial guess	One function evaluation per iteration (two evaluations for the initial guesses only), no need to compute derivatives
Newton	$x_{k+1}=x_{k}+h$	Quadratic $(r=2)$, local convergence properties, convergence depends on the initial guess	Two function evaluations per iteration, requires first order derivatives
$h=-f\left(x_{k}\right) / d f a$			
$d f a=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{\left(x_{k}-x_{k-1}\right)}$			

