Eigenvalues and Eigenvectors

Eigenvalue problem

Let \boldsymbol{A} be an $n \times n$ matrix:
$\boldsymbol{x} \neq \mathbf{0}$ is an eigenvector of \boldsymbol{A} if there exists a scalar λ such that

$$
A x=\lambda x
$$

where λ is called an eigenvalue. ligenvalues
\rightarrow ligepairs
If \boldsymbol{x} is an eigenvector, then $\boldsymbol{\alpha} \boldsymbol{x}$ is also an eigenvector. Therefore, we will usually seek for normalized eigenvectors, so that

$$
\begin{array}{l|l}
\underset{\sim}{x}=\alpha u \\
A(\alpha u)=\lambda(\alpha u) & \|x\|_{P}=1
\end{array} \quad\|x\|_{2}=1
$$

Note: When using Python, numpy.linalg.eig will normalize using $p=2$ norm.

How do we find eigenvalues?

Linear algebra approach:
$\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$
$(A-\lambda I) x=0$
Therefore the matrix $(\boldsymbol{A}-\lambda \boldsymbol{I})$ is singular $\Longrightarrow \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$
$p(\lambda)=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})$ is the characteristic polynomial of degree n.

In most cases, there is no analytical formula for the eigenvalues of a matrix (Abel proved in 1824 that there can be no formula for the roots of a polynomial of degree 5 or higher) \Rightarrow Approximate the eigenvalues numerically!

Example $\int \begin{array}{r}\text { columsss of } A \text { are } L \cdot D . \\ A \text { is singlatar matrix }\end{array} \quad \operatorname{det}(A-\lambda I)=0$

$$
A=\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \quad \operatorname{det}\left(\begin{array}{cc}
2-\lambda & 1 \\
4 & 2-\lambda
\end{array}\right)=0
$$

$$
p(\lambda)=(2-\lambda)^{2}-4=0 \rightarrow 4-2(2) \lambda+\lambda^{2}-4=0
$$

eigenvectors

$$
(A-\lambda I) x=0
$$

$$
\left(\begin{array}{cc}
2-0 & 1 \\
4 & 2-0
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

$$
\left.\left.\begin{array}{c}
2 u_{1}+u_{2}=0 \\
4 u_{1}+2 u_{2}=0
\end{array}\right\} \begin{array}{l}
u_{2}=-2 u_{1} \\
x=\binom{1}{-2} \operatorname{or}\binom{2}{-4} \\
\lambda=0
\end{array}\right\}
$$

$$
\begin{aligned}
& \lambda^{2}-4 \lambda=0 \\
& \lambda(\lambda-4)=0 \\
& \left.\begin{array}{l}
\lambda=0 \\
\lambda=4
\end{array}\right\} \begin{array}{c}
\text { twos } \\
\text { digsinet } \\
\text { enter }
\end{array} \\
& \left\{\begin{array}{l}
\left(\begin{array}{cc}
2-4 & 1 \\
4 & 2-4
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0} \\
-2 u_{1}+u_{2}=0 \\
4 u_{1}-2 u_{2}=0
\end{array}\right\} u_{2}=2 u_{1}, ~ \begin{array}{l}
x=\binom{1}{2} \frac{\lambda=4}{2 L . I} \text { eigenvectors }
\end{array}
\end{aligned}
$$

Diagonalizable Matrices
A $n \times n$ matrix \boldsymbol{A} with n linearly independent eigenvectors \boldsymbol{u} is said to be
diagonalizable.

Example $A=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right) \quad \operatorname{det}\left(\begin{array}{cc}2-\lambda & 1 \\ 4 & 2-\lambda\end{array}\right)=0$ Solution of characteristic polynomial gives: $\lambda_{1}=4, \lambda_{2}=0$ normalized eigenvectors

$$
\begin{aligned}
& \text { To get the eigenvectors, we solve: } \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \\
& \left(\begin{array}{cc}
2-(4) & 1 \\
4 & 2-(4)
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \left(\begin{array}{cc}
2-(0) & 1 \\
4 & 2-(0)
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& A=U=D U_{=}^{-1} \\
& \left.\begin{array}{l}
x=\binom{1}{2} \\
x=\binom{-1}{2}
\end{array}\right) X=\binom{0.447}{0.894} \\
& \downarrow \\
& \text { linearly } \\
& \text { ind. } \\
& \downarrow \\
& A \text { is diag. } \\
& \underline{U}=\left[\begin{array}{cc}
0.447 & -0.447 \\
0.894 & 0.894
\end{array}\right] \\
& D=\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Example

$\operatorname{det}(A)=27-(-36)=63 \neq 0$ \rightarrow NOT SINGULAR
The eigenvalues of the matrix:

$$
(A-\lambda I) x=0
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
3 & -18 \\
2 & -9
\end{array}\right)\left(\begin{array}{cc}
3-(-3) & -18 \\
2 & -9-(-3)
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0} \\
& \\
& \text { tatement: } \quad\left(\begin{array}{cc}
6 & -18 \\
2 & -6
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
\end{aligned}
$$

are $\lambda_{1}=\lambda_{2}=-3$.

Select the incorrect statement:

\rightarrow False

A) Matrix \boldsymbol{A} is diagonalizable
$6 u_{1}-18 u_{2}=0$
B) The matrix \boldsymbol{A} has only one eigenvalue with multiplicity $2 \rightarrow$ True
C) Matrix \boldsymbol{A} has only one linearly independent eigenvector \rightarrow True
D) Matrix \boldsymbol{A} is not singular \rightarrow True

Let's look back at diagonalization...

1) If a $n \times n$ matrix \boldsymbol{A} has n linearly independent eigenvectors \boldsymbol{x} then \boldsymbol{A} is diagonalizable, i.e.,

$$
A=U D U^{-1}
$$

where the columns of \boldsymbol{U} are the linearly independent normalized eigenvectors \boldsymbol{x} of \boldsymbol{A} (which guarantees that $\boldsymbol{U}^{\mathbf{1}}$ exists) and \boldsymbol{D} is a diagonal matrix with the eigenvalues of \boldsymbol{A}.
2) If a $n \times n$ matrix \boldsymbol{A} has less then n linearly independent eigenvectors, the matrix is called defective (and therefore not diagonalizable).
3) If a $n \times n$ symmetric matrix \boldsymbol{A} has n distinct eigenvalues then \boldsymbol{A} is diagonalizable.

A $\boldsymbol{n} \times \boldsymbol{n}$ symmetric matrix \boldsymbol{A} with \boldsymbol{n} distinct eigenvalues is diagonalizable.

$$
\begin{aligned}
& \text { inct eigenvalues is } \\
& \lambda_{1} u \rightarrow A u=\lambda u \\
& \mu_{1} v \rightarrow A v=\mu v
\end{aligned}
$$

Suppose λ, \boldsymbol{u} and $\boldsymbol{\mu}, \boldsymbol{v}$ are eigenpairs of \boldsymbol{A}

$$
\lambda \boldsymbol{u}=\boldsymbol{A} \boldsymbol{u}
$$

$$
\mu \boldsymbol{v}=\boldsymbol{A} \boldsymbol{v}
$$

$$
A \underline{u}=\lambda \underline{\sim}
$$

$$
\longrightarrow \text { vector }
$$

$$
\underset{\sim}{v} \cdot \underset{=}{A} \underline{u}=\lambda \underset{\sim}{v} \cdot \underset{\sim}{u}
$$

\longrightarrow scalars

$$
{\underset{\underline{A}}{ }}_{\top}^{v} \cdot \underline{u}=\lambda \underline{v} \cdot \underline{u}
$$

A symmetric $\Rightarrow A \underline{v} \cdot \underline{u}=\lambda \underset{v}{v}$

$$
{\underset{\underline{A}}{ }}_{\top}^{\top}=\underline{A}
$$

$$
\mu \underset{\sim}{v} \cdot \underset{\sim}{u}=\lambda \underset{\sim}{v} \cdot \underset{\sim}{u}
$$

$$
\underbrace{(\mu-\lambda)}_{\neq 0}(\underset{\sim}{v} \cdot \underline{u})=0 \Rightarrow \underset{\sim}{v} \underline{v}^{u}=0
$$

Some things to remember about eigenvalues:

- Eigenvalues can have zero value
- Eigenvalues can be negative
- Eigenvalues can be real or complex numbers
- A $n \times n$ real matrix can have complex eigenvalues
- The eigenvalues of a $n \times n$ matrix are not necessarily unique. In fact, we can define the multiplicity of an eigenvalue.
- If a $n \times n$ matrix has n linearly independent eigenvectors, then the matrix is diagonalizable

How can we get eigenvalues numerically?

$$
A, n \times n \xrightarrow{c}, u_{2}, \ldots, u_{n} \Longrightarrow \text { LI. }
$$

Assume that \boldsymbol{A} is diagonalizable (i.e., it has n linearly independent eigenvectors $\boldsymbol{u})$. We can propose a vector \boldsymbol{x} which is a linear combination of the eigenvectors:

$$
\begin{aligned}
& \quad x=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{n} u_{n} \\
\underline{A x} & =A \alpha_{1} u_{1}+A \alpha_{2} u_{2}+\cdots+A \alpha_{n} u_{n} \\
= & \alpha_{1} \lambda_{1} u_{1}+\alpha_{2} \lambda_{2} u_{2}+\cdots+\alpha_{n} \lambda_{n} u_{n}
\end{aligned}
$$

$$
A u_{i}=\lambda_{i} u_{i}
$$

Assume:

$$
\left.\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \ldots\right\rangle\left|\lambda_{n}\right|
$$

Power Iteration

$$
x_{0}=
$$

\qquad

$$
x_{1}=
$$

\qquad
Our goal is to find an eigenvector \boldsymbol{u}_{i} of \boldsymbol{A}. We will use an iterative process, converge where we start with an initial vector, where here we assume that it can be written as a linear combination of the eigenvectors of \boldsymbol{A}. \qquad u_{i} all L.I.

$$
\begin{aligned}
& \underset{\sim}{A}{\underset{\sim}{x}}_{1}=A \alpha_{1} \lambda_{1} u_{1}+A \alpha_{2} \lambda_{2} u_{2}+\cdots+A \alpha_{n} \lambda_{n} u_{n} \\
& =\alpha_{1} \lambda_{1}\left(\lambda_{1} u_{1}\right)+\alpha_{2} \lambda_{2}\left(\lambda_{2} u_{2}\right)+\cdots+\alpha_{n} \lambda_{n}\left(\lambda_{n} u_{n}\right) \text { after } \\
& =\alpha_{1} \lambda_{1}^{2} u_{1}+\alpha_{2} \lambda_{2}^{2} u_{2}+\cdots+\alpha_{n} \lambda_{n}^{2} u_{n}=x_{2}^{2} 2^{\text {nd liter. }} \\
& \underline{\underline{A}} \underline{x}_{2}=\alpha_{1} \lambda_{1}^{3} u_{1}+\alpha_{2} \lambda_{2}^{3} u_{2}+\cdots+\alpha_{n} \lambda_{n}^{3} u_{n}=x_{3} \\
& A_{1} x_{k-1}^{\prime}=\alpha_{1} \lambda_{1}^{k} u_{1}+\alpha_{2} \lambda_{2}^{k} u_{2}+\cdots+\alpha_{n} \lambda_{n}^{k} u_{n}={\underset{\sim}{x}}_{k}
\end{aligned}
$$

Power Iteration

$$
x_{0}=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{n} u_{n}
$$

$A_{n \times n}$ n

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}[\left[\alpha_{1} \alpha_{1} \boldsymbol{u}_{1}\right)+\underbrace{\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} u_{2}+\cdots \alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} u_{n}} \underbrace{1}]
$$

Assume that $\alpha_{1} \neq 0$, the term $\alpha_{1} \boldsymbol{u}_{1}$ dominates the others when k is very large.

$$
\begin{aligned}
& \text { animates the e tress when } \kappa_{1} \text { is }\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right|
\end{aligned}
$$

dominant
Since $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, we have $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \ll 1$ when k is large
Hence, as \boldsymbol{k} increases, $\boldsymbol{x}_{\boldsymbol{k}}$ converges to a multiple of the first eigenvector \boldsymbol{u}_{1}, i.e.,

$$
R \rightarrow \infty \Longrightarrow x_{n} \rightarrow \underset{L \text { large! }\left\|x_{k}\right\| \rightarrow \text { grow }}{ }
$$

