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Numerical experiments

Input has uncertainties:

* Errors due to representation with finite precision
* Error in the sampling

Once you select your numerical method , how much error
should you expect to see in your output?

Is your method sensitive to errors (perturbation) in the input?
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Sensitivity of Solutions of Linear Systems

Suppose we start with a non-singular system of linear equations A x = b.

We change the right-hand side vector b (input) by a small amount Ab.

/
How much the solution x (output) changes, 1.e., how large 1s Ax? i
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Sensitivity of Solutions of Linear S%stems
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Sensitivity of Solutions of Linear Systems
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Sensitivity of Solutions of Linear Systems

We can also add a perturbation to the matrix A (input) by a small

amount E, such that /

(A+E)x :@
and 1n a similar way obtain:
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Condition number

The condition number 1s a measure of sensitivity of solving a linear system
of equations to variations in the input.

The condition number of a matrix A:

cond(A4) = [|1A7] ||A]|
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Recall that the induced matrix norm 1s given by

All = max ||Ax
| IIP”xnzlll Il,f

And since the condition number is relative to a given norm, we should be
precise and for example write:

cond,(A) of cond (A)
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Small condition numbers mean not a lot of error amplification. Small
condition numbers are good!
But how small?
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Condition number

lax | |ab|
< cond(A
el = oA

Small condition numbers mean not a lot of error amplification. Small
condition numbers are good!

Recall that

1| = max 1T x|l =1

Which provides with a lower bound for the condition number:
cond(4) = [|lA7H| |4l = lA7*All = ||| = 1

If A~ does not exist, then cond(A) = oo (by convention)
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Recall Induced Matrix Norms

n
” A ” 1 = max z | Ai ]l Maximum absolute column sum of the matrix 4
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|A||oc = max E |Ai jl Maximum absolute row sum of the matrix A
l
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lAll; = max

o

-

Oy are the singular value of the matrix A
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Condition Number of a Diagonal Matrix

What is the 2-norm-based condition number of the diagonal matrix
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Condition Number of Orthogonal
Matrices

What is the 2-norm condition number of an orthogonal matrix A?
cond(4) = lA7"lz lAllz = ||AT],llAll; = 1

That means orthogonal matrices have optimal conditioning.

They are very well-behaved in computation.
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About condition numbers

1. For any matrix A, cond(4) =1
2. For the identity matrix I, cond(I) =1

3. For any matrix A and a nonzero scalar y, cond(yA) = cond(A)

4. For any diagonal matrix D, cond(D) = ———

- min|d;|

5. The condition number 1s a measure of how close a matrix is to being
singular: a matrix with large condition number 1s nearly singular,
whereas a matrix with a condition number close to 1 is far from being
singular

6. @ Thedeterminantrof @matrixiis NOT a good indicator 1s a matrix is near

singularity M ( A) =0 — Sl’ﬂ )
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Residual versus error

Our goal is to find the solutio@ the linear system of equations Ax = b

—

Let us recall the solution of the perturbed problem

x=(x+ Ax)
R R

which could be the solution of

AZ=(b+Ab), (A+E)x=b, (A+E)%=(b+Ab)
Sm— I p—— -

And the'errer vector as

e=Ax=Xx :( X >
— %
We can write the residual vector as L A
So \
r=b—AXx A% erroY
\ x-K
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R lati idual:
elative residual: -7/

(How well the solution satisfies the problem)

N

Relative error: il

(How close the approximated solution 1s
from the exact one)
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Residual versus error

It 1s possible to show that the residual satisfy the following inequality:
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Where¢ ¢ is “large” constant when LU/Gaussian elimination is performed
without pivoting and “small” with partial pivoting.

Therefore, Gaussian elimination with partial pivoting yields small relative
residual regardless of conditioning of the system.

When solving a system of linear equations
via LU with partial pivoting, the relative
residual is guaranteed to be small!
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Residual versus error

Let us first obtain the norm of the error:
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Rule of thumb for conditioning

Suppose we want to find the solution x to the linear system of equations
A x = b using LU factorization with partial pivoting and backward/forward
substitutions.
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Suppose we compute the solution X. “\“\\

If the entries in A and b are accurate tO S §ecimal digits,

andfcond (A) @ fer -\ AX\\\ < Cond(n) &-/\o\\

I\ % T\
then the elements of the solution vector X will bk accurate to about
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