LU Factorization with pivoting

$$\begin{bmatrix} C & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

A x b

1) We want to solve for x

2) But first we will "construct the problem".

_ shart with the true solution
$$x_t = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
_ set $C = 10^{-1}$ (for example)

_ compute matrix-vector multiplication to
find $b = Ax_t$

I) We

3) Now we can perform the solve Ax = b to find x (4) If "all goes well", x=xt. Is it?

What can go wrong with the previous algorithm for LU factorization?

The next update for the lower triangular matrix will result in a division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

Pivoting

Approach:

- 1. Swap rows if there is a zero entry in the diagonal
- 2. Even better idea: Find the largest entry (by absolute value) and swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} \\ u_{11} & l_{21} & l_{21} & u_{12} + L_{22} & U_{22} \end{pmatrix}$$

Find the largest entry (in magnitude)

Sparse Systems

Sparse Matrices

Some type of matrices contain many zeros. Storing all those zero entries is wasteful!

How can we efficiently store large matrices without storing tons of zeros?

- **Sparse matrices** (vague definition): matrix with few non-zero entries.
- For practical purposes: an $m \times n$ matrix is sparse if it has $O(\min(m, n))$ non-zero entries.
- This means roughly a constant number of non-zero entries per row and column.
- Another definition: "matrices that allow special techniques to take advantage of the large number of zero elements" (J. Wilkinson)

Sparse Matrices: Goals

- Perform standard matrix computations economically, i.e., without storing the zeros of the matrix.
- For typical Finite Element and Finite Difference matrices, the number of non-zero entries is O(n)

where nnz(X) = number of non-zero elements of a matrix **X**

Popular Storage Structures

- DNS Dense
 BND Linpack Banded
 COO Coordinate
 CSR Compressed Sparse Row
 CSC Compressed Sparse Column
 MSR Modified CSR
- LIL Linked List

- ELL Ellpack-Itpack
- DIA Diagonal
- **BSR** Block Sparse Row
- SSK Symmetric Skyline
- **BSR** Nonsymmetric Skyline
- JAD Jagged Diagonal

note: CSR = CRS, CCS = CSC, SSK = SKS in some references

We will focus on COO and CSR!

Dense (DNS)

$$A = \begin{bmatrix} 0. & 1.9 & 0. & -5.2 \\ 0.3 & 0. & 9.1 & 0. \\ 4.4 & 5.8 & 3.6 & 0. \\ 0. & 0. & 7.2 & 2.7 \end{bmatrix}$$

- Simple
- Row-wise
- Easy blocked formats
- Stores all the zeros

Representing a Sparse Matrix in Coordinate (COO) Form

Consider the following matrix:

 $A = \begin{bmatrix} 0 & 0 & 1.3 \\ -1.5 & 0.2 & 0 \\ 5 & 0 & 0 \\ 0 & 0.3 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1.3 \\ 0 & 0 \end{bmatrix}$

1 point

 $nn_2(A) = 6$

Suppose we store one row index (a 32-bit integer), one column index (a 32-bit integer), and one data value (a 64-bit float) for each non-zero entry in A. How many bytes in total are stored? Please note that 1 byte is equal to 8 bits.

data = $\begin{bmatrix} 1.3 & 0.2 & 5 & -1.5 & 3 & 0.3 \end{bmatrix}$ Col = $\begin{bmatrix} 2 & 1 & 0 & 0 & 2 & 1 \end{bmatrix}$ row = $\begin{bmatrix} 0 & 1 & 2 & 1 & 3 & 3 \end{bmatrix}$ 6 floats + 6 integers (6 × 64 + 12 × 32) bits = 96 bytes

- Does not store the zero elements
- Fast arithmetic operations between sparse matrices, and fast matrixvector product
- *col*: contain the column indices (array of *nnz* integers)
- *data*: contain the non-zero elements (array of *nnz* doubles)
- *rowptr*: contain the row offset (array of n + 1 integers)