
Video 1: Rounding errors 



A number system can be represented as ! = ±1. &!&"&#&$×2%
for ! ∈ [−6,6] and (! ∈ {0,1}. 

Let’s say you want to represent the decimal number 19.625 using the binary 
number system above.  Can you represent this number exactly? 
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(19.62540--40011.10112=4.00111014×2
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1. 0011×24 = 19

1.0100×24=20



Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point 

number.
• Consider a real number in the normalized floating-point form:

- = ±1. ("(#($…(%…× 2&
• The real number - will be approximated by either -' or -(, the nearest two 

machine floating point numbers.
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Rounding
The process of replacing ! by a nearby machine number is called 
rounding, and the error involved is called roundoff error.
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Round by chopping:
+ is positive number + is negative number

Round up (ceil) ,- + = +!
Rounding towards +∞

,- + = +"
Rounding towards zero

Round down (floor) ,- + = +"
Rounding towards zero

,- + = +!
Rounding towards −∞

Round to nearest: either round up or round down, whichever is closer
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Rounding (roundoff) errors
Consider rounding by chopping:

• Absolute error:

• Relative error:
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Rounding (roundoff) errors

)*(!) − !
|!| ≤ 0%

The relative error due to rounding (the process of 
representing a real number as a machine number) is always 

bounded by machine epsilon.
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IEEE Single Precision
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IEEE Double Precision
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Gap between two machine numbers
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Gap between two machine numbers
Rule ofthlehnbs
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Gap between two machine numbers
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Show Ipython notebook demos
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Video 2: Arithmetic with machine 
numbers



Mathematical properties of FP operations
Not necessarily associative: 
For some ! , #, $ the result below is possible:

! + # + $ ≠ ! + (# + $)

Not necessarily distributive: 
For some ! , #, $ the result below is possible:

$ ! + # ≠ $ ! + $ #

Not necessarily cumulative: 
Repeatedly adding a very small number to a large number may do nothing



Floating point arithmetic (basic idea)

• First compute the exact result
• Then round the result to make it fit into the desired 

precision

• ! + # = %& ! + #

• ! × # = %& ! × #

! = (−1)! 1. ( × 2"



Floating point arithmetic
Consider a number system such that ! = ±1. ,!,",#×2%
for ! ∈ [−4,4] and (! ∈ {0,1}.

Rough algorithm for addition and subtraction:
1. Bring both numbers onto a common exponent
2. Do “grade-school” operation
3. Round result

• Example 1: No rounding needed

- = 1.101 " ×2!
, = 1.001 " ×2!

/ = - + , = 10.110 " ×2! = 1.011 " ×2"
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Floating point arithmetic
Consider a number system such that ! = ±1. ,!,",#×2%
for ! ∈ [−4,4] and (! ∈ {0,1}.

- = 1.101 " ×24
, = 1.000 " ×24

/ = - + , = 10.101 " ×24

• Example 2: Require rounding

- = 1.100 " ×2!
, = 1.100 " ×2&!

/ = - + , = 1.100 " ×2! + 0.011 " ×2! = 1.111 " ×2!

• Example 3:
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Floating point arithmetic
Consider a number system such that ! = ±1. ,!,",#,$×2%
for ! ∈ [−4,4] and (! ∈ {0,1}.

- = 1.1011 " ×2!
, = 1.1010 " ×2!

• Example 4:

/ = - − , = 0.0001 " ×2!

tF→p=5

{ } I:i% :3:
-

0.0001×2
'

-

i.¥42
'

not sign bitsfffa-b)=L . 2
'



Floating point arithmetic
Consider a number system such that ! = ±1. ,!,",#,$×2%
for ! ∈ [−4,4] and (! ∈ {0,1}.

- = 1.1011 " ×2!
, = 1.1010 " ×2!

• Example 4:

/ = - − , = 0.0001 " ×2!

Or after normalization: / = 1. ? ? ? ? " ×2&#

• There is not data to indicate what the missing digits should be.
• Machine fills them with its best guess, which is often not good (usually 

what is called spurious zeros).
• Number of significant digits in the result is reduced.
• This phenomenon is called Catastrophic Cancellation.
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Loss of significance
Assume - and , are real numbers with - ≫ ,. For example

- = 1. -!-"-#-$-0-1…-5…×24
, = 1. ,!,",#,$,0,1…,5…×2&6

In Single Precision, compute - + ,

1. -!-"-#-$-0-1-/-6-7…-""-"#×24
f-23
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Cancellation
Assume - and , are real numbers with - ≈ ,. 

- = 1. -!-"-#-$-0-1…-5…×2%
, = 1. ,!,",#,$,0,1…,5…×2%

In single precision (without loss of generality), consider this example:

- = 1. -!-"-#-$-0-1…-"4-"!10-"$-"0-"1-"/…×2%
, = 1. -!-"-#-$-0-1…-"4-"!11,"$,"0,"1,"/…×2%

, − - = 0.0000…0001×2%

O

=

FE
#%

tub-a)= I . 2-23×2m

not sig .



Examples:
1) 2 and 3 are real numbers with same order of magnitude (4 ≈ 6). They have the 

following representation in a decimal floating point system with 16 decimal digits of 
accuracy:

78 4 = 3004.45
78 6 = 3004.46

How many accurate digits does your answer have when you compute 6 − 4? 
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Loss of Significance
How can we avoid this loss of significance? For example, consider the 
function 5 ! = !" + 1 − 1

If we want to evaluate the function for values ! near zero, there is a 
potential loss of significance in the subtraction.

Assume you are performing this computation using a machine with 5 
decimal accurate digits. Compute 5(10&#)

f-(10-3)=110-7- I
1.000000
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Loss of Significance

Re-write the function 5 ! = !" + 1 − 1 to avoid subtraction of two 
numbers with similar order of magnitude
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Example:
If x = 0.3721448693 and y = 0.3720214371 what is the relative error in the computation of  
(x − y) in a computer with five decimal digits of accuracy? 
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