Video 1: Rounding errors

A number system can be represented as $x= \pm 1 . b_{1} b_{2} b_{3} b_{4} \times 2 m$ for $m \in[-6,6]$ and $b_{i} \in\{0,1\}$.

Let's say you want to represent the decimal number 19.625 using the binary number system above. Can you represent this number exactly?

$$
(19.625)_{10}=(10011.101)_{2}=(1.0011101)_{2} \times 2^{4}
$$

$1.0011 \times 2^{4}=19$
$1.0100 \times 2^{4}=20$

Machine floating point number

$$
\begin{aligned}
& \text { larger \# } \longrightarrow \text { larger gap }
\end{aligned}
$$

Rounding

$x \longrightarrow f l(x)$ $=|f(x)-x|$

The process of replacing x by a nearby machine number is called rounding, and the error involved is called roundoff error.

Round to nearest: either round up or round down, whichever is closer

Rounding (roundoff) errors Consider rounding by chopping:

$$
\begin{aligned}
& \text { - Absolute error: } \\
& |f l(x)-x| \leqslant \epsilon_{m} \times 2^{m}
\end{aligned}
$$

Rounding (roundoff) errors

The relative error due to rounding (the process of representing a real number as a machine number) is always bounded by machine epsilon.

IEEE Single Precision
IEEE Double Precision

$$
\begin{aligned}
& \frac{|f l(x)-x|}{|x|}=(2-23) \\
& e_{r} \leqslant 1.2 \times 10^{-7} \leqslant 5 \times 10^{1.2 \times 10^{-7}} \\
& e_{r} \leqslant 5 \times 10^{-7}
\end{aligned} \quad\left\{\begin{array}{l}
\frac{|f l(x)-x|}{|x|} \leqslant 2^{-52} \leqslant 2.2 \times 10^{-16} \\
e_{r} \leqslant 2.2 \times 10^{-16} \\
e_{r} \leqslant 5 \times 10^{-16} \\
\\
\end{array}\right.
$$

Gap between two machine numbers

$$
\begin{gathered}
\hat{x}=\frac{f l(x)}{f l(x+\delta)=f l(x)} \\
\text { gap } \\
\delta<\text { gap }
\end{gathered}
$$

Rule of Thumbs
Gap between two machine numbers

$$
\begin{array}{l|l}
\text { Gap between two machine numbers } \\
\text { Binary } x=q \times 2^{m} & \text { Decimal: } x=q \times 10^{m} \\
x=2^{8} & x=4.5 \times 10^{4} \\
\delta \leqslant \epsilon_{m} 2^{m} \Rightarrow \delta \leqslant 2^{-23} 2^{8} & \begin{array}{l}
\text { double } \\
\text { (single) } \delta \leqslant 2^{-15}
\end{array} \\
\delta \leqslant \operatorname{gap} \Rightarrow \delta \leqslant 10^{-16} 10^{4} \\
f l(x+\delta)=f l(x) & \delta \leqslant 10^{-12} \\
\delta<2^{15} \rightarrow f l(x+\delta)=f l(x) & \delta<10^{-12} \rightarrow f l(x+\delta)=f l(x) \\
\delta>2^{-15} \rightarrow f l(x+\delta) \neq f l(x) & \delta>10^{-12} \rightarrow f l(x+\delta) \neq f l(x)
\end{array}
$$

Gap between two machine numbers

What is the smallest δ such that $f l(x+\delta)=f f(x) \rightarrow \delta<g a p!$

In practice (Rule of Thumb) Show python wabock temps

Binary base $x=q \times 2^{m}$

$$
f l(x+\delta)=f f(x)
$$

$$
\delta<\epsilon_{m} 2^{m}
$$

Example

$$
x=2^{8}
$$

$$
\begin{aligned}
& x=2^{8} \\
& \delta<2^{-23} 2^{8}=2^{-15} \delta<2^{-15}
\end{aligned}
$$

if $\delta<2^{-15} \Rightarrow f f(x+\delta)=f l(x)$

$$
\delta<2^{-15} \Rightarrow f l(x+\delta)=f l(x)
$$

otherwise $f l(x+\delta) \neq f l(x)$

$$
\begin{aligned}
& \text { Decimal base } \\
& x=q \times 10^{m}
\end{aligned}
$$

Example $x=4.5 \times 10^{4}$
Double Precision

$$
\left\{\begin{array}{l}
\delta<10^{-16} \times 10^{9} \\
\frac{\delta<10^{-12} \mid}{}
\end{array}\right.
$$

Video 2: Arithmetic with machine numbers

Mathematical properties of FP operations

Not necessarily associative:
For some x, y, z the result below is possible:

$$
(x+y)+z \neq x+(y+z)
$$

Not necessarily distributive:

For some x, y, z the result below is possible:

```
In [5]: (np.pi+1e100)-1e100
Out[5]: 0.0
```

In [6]: (np.pi)+(1e100-1e100)
Out [6]: 3.141592653589793
In [7]: $\begin{aligned} & \mathrm{b} \\ & \mathrm{a}=1 \mathrm{e}=1 \mathrm{e}= \\ & \mathrm{a}=1\end{aligned}$
print $(a+(b-b))$
print($(a+b)-b$)
100.0
0.0
$z(x+y) \neq z x+z y$

```
In [3]: print(100*(0.1 + 0.2))
print(100*0.1 + 100*0.2)
30.0000000000000004
30.0
In [4]: 100*(0.1 + 0.2) == 100*0.1 + 100*0.2
Out[4]: False
```

Not necessarily cumulative:
Repeatedly adding a very small number to a large number may do nothing

Floating point arithmetic (basic idea)

$$
x=(-1)^{s} 1 . f \times 2^{m}
$$

- First compute the exact result
- Then round the result to make it fit into the desired precision
- $x+y=f l(x+y)$
- $x \times y=f l(x \times y)$

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

Rough algorithm for addition and subtraction:

$$
\begin{gathered}
n=3 \\
p=4
\end{gathered}
$$

1. Bring both numbers onto a common exponent
2. Do "grade-school" operation
3. Round result

- Example 1: No rounding needed

$$
\begin{aligned}
& \text { ample 1: No rounding needed } \\
& \left.\begin{array}{l}
a=(1.101)_{2} \\
b=(1.001)_{2}
\end{array}\right) \frac{\left(1.0012^{1}\right.}{|0,| 10 \times 2^{1}} \times 2^{1} \\
& c=(a+b)=
\end{aligned}
$$

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

- Example 2: Require rounding

$$
\left\{\begin{array}{l}
a=(1.101)_{2} \sqrt{2^{0}} \\
b=(1.000)_{2}
\end{array}\right.
$$

$$
\begin{aligned}
& b=(1.000)_{2} \underbrace{20}_{c} \\
& c=a+b=\underbrace{(10.101)_{2} \times 2^{0}}
\end{aligned} \xrightarrow{1.0101 \times 2^{1}}
$$

- Example 3:

$$
\begin{aligned}
& \left\{\begin{array}{l}
a=(1.100)_{2}\left(\times 2^{1}\right. \\
b=(1.100)_{2} \times 2^{-1}
\end{array}\right. \\
& c=a+b=(1.100)_{2} \times 2^{1}+(0.011)_{2} \times 2^{1}=(1.111)_{2} \times 2^{1}
\end{aligned}
$$

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} b_{4} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

$$
n=4 \rightarrow p=5
$$

$$
\begin{aligned}
& \text { - Example 4: } \\
& \left\{\begin{array}{l}
a=(1.1011)_{2} \times 2^{1} \\
b=(1.1010)_{2} \times 2^{1}
\end{array}\right\} \\
& c=a-b=(0.0001)_{2} \times 2^{1} \\
& \text { 1. ? } \times 2^{1} \\
& f(a-b)=1 . \underbrace{0000} \times 2^{\prime} \\
& \begin{array}{r}
1.1011 \times 2^{1} \\
-1.1010 \times 2^{1} \\
\hline 0.0001 \times 2^{1}
\end{array} \\
& \text { not signs bits }
\end{aligned}
$$

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} b_{4} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

- Example 4:

$$
\begin{aligned}
& a=(1.1011)_{2} \times 2^{1} \\
& b=(1.1010)_{2} \times 2^{1} \\
& c=a-b=(0.0001)_{2} \times 2^{1}
\end{aligned}
$$

$$
\text { Or after normalization: } \quad c=(1 . ? ? ? ?)_{2} \times 2^{-3}
$$

- There is not data to indicate what the missing digits should be.
- Machine fills them with its best guess, which is often not good (usually what is called spurious zeros).
- Number of significant digits in the result is reduced.
- This phenomenon is called Catastrophic Cancellation.

Loss of significance

Assume a and b are real numbers with $a \gg b$. For example
$a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{n} \ldots \times 2^{0}$
$b=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{n} \ldots \times 2^{-8}$

In Single Precision, compute $(a+b) \quad n=23$
$f:()=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} \ldots a_{22} a_{23} \times 2^{0}$
$0.00000001 b_{1} b_{2} \cdots b_{19} b_{55} \times 2^{\circ}$
$f l(a+b) \Rightarrow 15$ bits of \underline{b}

Cancellation

Assume a and b are real numbers with $a \approx b$.

$$
\begin{aligned}
& a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{n} \ldots \times 2^{m} \\
& b=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{n} \ldots \times 2^{m}
\end{aligned}
$$

In single precision (without loss of generality), consider this example:
$a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{20} a_{21} 10 a / 24 a / 25 a_{26} a / \sim / \ldots \times 2^{m}$ $b=1 . \underbrace{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{20} a_{21} 11 b_{2} b_{25} b_{26} b_{2} \ldots \times 2^{m}}$
$b-a=0.0000 \ldots 0001 \times 2^{m}$
$f l(b-a)=1.000 \cdots 00 \times 2^{-23} \times 2^{m}$
not sly.

Examples:

1) \boldsymbol{a} and \boldsymbol{b} are real numbers with same order of magnitude ($\boldsymbol{a} \approx b$). They have the following representation in a decimal floating point system with 16 decimal digits of accuracy:

$$
\begin{aligned}
& f l(a)=3004.45 \\
& f l(b)=3004.46
\end{aligned}
$$

How many accurate digits does your answer have when you compute $b-a$?

Loss of Significance

How can we avoid this loss of significance? For example, consider the function $f(x)=\sqrt{x^{2}+1}-1$

If we want to evaluate the function for values x near zero, there is a potential loss of significance in the subtraction.

Assume you are performing this computation using a machine with 5 decimal accurate digits. Compute $f\left(10^{-3}\right)$
$f\left(10^{-3}\right)=\underbrace{\sqrt{10^{-6}+1}}_{1-1}-1$
$\begin{array}{r}1.000000 \\ +0.00000 .1 \\ \hline 1.000001\end{array}$

$$
=\phi
$$

Loss of Significance $\quad(a-b)(a+b)=a^{2}-b^{2}$
Re-write the function $f(x)=\sqrt{x^{2}+1}-1$ to avoid subtraction of two

$$
\begin{aligned}
& \begin{aligned}
f(x) & =\left(\sqrt{x^{2}+1}-1\right)\left(\frac{\sqrt{x^{2}+1}+1}{\sqrt{x^{2}+1}+1}\right)=\frac{\left(\sqrt{x^{2}+1}\right)^{2}-(1)^{2}}{\sqrt{x^{2}+1}+1} \\
& =\frac{x^{2}+1-1}{\sqrt{x^{2}+1}+1} \quad f(x)=\frac{x^{2}}{\sqrt{x^{2}+1}+1} \\
f\left(10^{-3}\right) & =\frac{10^{-6}}{1+1}=\frac{10^{-6}}{2} / /
\end{aligned}
\end{aligned}
$$

Example:
round-down

