Machine numbers: how floating point numbers are stored?

Floating-point number representation

What do we need to store when representing floating point numbers in a computer?

$$
x= \pm 1 . f \times 2^{m}
$$

Initially, different floating-point representations were used in computers, generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard representation for floating-point number: IEEE (Institute of Electrical and Electronics Engineers) 754 Standard.

Floating-point number representation

Numerical form:

$$
x= \pm 1 . f \times 2^{m}
$$

Representation in memory:

$$
\begin{aligned}
& m \in[L, \cup] \\
& m \in[-4,4]
\end{aligned}
$$

$$
x=\begin{array}{|l|l|l}
\hline \pm & m & f \\
\hline
\end{array}
$$

Precisions:

Finite representation: not all numbers can be represented exactly!

IEEE-754 Single precision (32 bits):
$C=m+$ shift

$$
x=\begin{array}{|c|c|c|}
\hline \pm & c & f \\
\hline \text { bit } 8 \text { bits } & 23 \text { bits }
\end{array}
$$

IEEE-754 Double precision (64 bits):
$x=\frac{\begin{array}{c}t \\ -1\end{array} 1 \text { bits }}{\text { lbit }} \quad$ C 52 bits (f)

IEEE-754 Single Precision (32-bit)

$$
\begin{aligned}
& (00000000)_{2}=(0)_{10} \\
& (111111111)_{2}=(255)_{10} \quad 0 \leqslant c \leqslant 255 \\
& \text { reserve } \underline{\underline{0}}, 255 \longrightarrow \text { special cases } \\
& 1 \leqslant c \leqslant 254 \longrightarrow 1 \leqslant m+\text { shift } \leqslant 254 \\
& \text { set shift }=127, \quad,-126 \leqslant m \leqslant 127 \quad m \in[-126,127]
\end{aligned}
$$

IEEE-754 Single Precision (32-bit)
$\left.x=(-1)^{s}\right) . f \times 2^{m}$ S $\left\{\begin{array}{l}>0 \longrightarrow(-1)^{\circ} \Rightarrow \text { Positive } \\ \rightarrow 1 \longrightarrow(-1)^{1} \Rightarrow \text { Negative }\end{array}\right.$
Example: Represent the number $x=-67.125$ using IEEE Single-

IEEE-754 Single Precision (32-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|c|c|c}
s & c & f \\
23 \\
\hline
\end{array}
$$

- Machine epsilon $\left(\epsilon_{m}\right)$: is defined as the distance (gap) between 1 and the next larger floating point number.

$$
\begin{aligned}
&(1)_{10}=1 . \underbrace{\text { and the ext larger floating point number. }}_{23 \text { bits }} \times 2^{000} \Theta 0.000 \ldots 01 \times 2^{0} \\
&=1 . \underbrace{000 \cdots 2^{\circ} \epsilon_{m}=2^{-23}, 2^{-23}}_{23 \text { bits }} \\
& \epsilon_{m}=2^{-n}
\end{aligned}
$$

- Smallest positive normalized FP number:

$$
U F L=2^{L}=2^{-126} \approx 10^{-38}
$$

IEEE-754 Double Precision (64-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m} \quad p=53(n+1)
$$

$s=0$: positive sign, $s=1$: negative sign

Reserved exponent number for special cases:

$c=m+s h i f t$
$1 \leqslant m+s h i f t \leqslant 2046$
shift $=1023$
$-1022 \leqslant m \leqslant 1023 \longrightarrow \operatorname{lm} \in[-1022,1023]$

IEEE-754 Double Precision (64-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|l|l|l|}
\hline s & c & f \\
\hline
\end{array} c=m+1023
$$

- Machine epsilon $\left(\epsilon_{m}\right)$: is defined as the distance (gap) between 1 and the next larger floating point number.

$$
\begin{aligned}
& (1)_{10}=\begin{array}{|l|l|l|l|}
\hline 0 & 0111 \ldots 11 & 000000000000 \ldots 000000000 \\
\hline
\end{array} \\
& (1)_{10}+\epsilon_{m}=\begin{array}{|l|l|l|}
\hline 0 & 0111 \ldots 111 & 000000000000 \ldots 000000001 \\
\hline
\end{array} \\
& \boldsymbol{\epsilon}_{\boldsymbol{m}}=\mathbf{2}^{-\mathbf{5 2}} \approx 2.2 \times 10^{-16} \\
& \epsilon_{m}=2^{-} \\
& n=52
\end{aligned}
$$

- Smallest positive normalized FP number:
$m \in[-1022,1023]^{\mathrm{UFL}=2 L}=2^{-1022} \approx 2.2 \times 10^{-308} \quad p=52$
- Largest positive normalized FP number:
$\mathrm{OFL}=2^{U+1}\left(1-2^{-p}\right)=2^{1024}\left(1-2^{-53}\right) \approx 1.8 \times 10^{308}$

Normalized floating point number scale (single precision)

∞, zero

Special Values: $c=(111 \ldots 11)$

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|l|l|l}
\hline s & c & f \\
\hline
\end{array}
$$

1) Zero:

$$
x=\begin{array}{|c|c|c}
\hline s & \underbrace{000 \ldots 000}_{8,11}, ~ & 0000 \ldots 0000 \\
23,52
\end{array}
$$

2) Infinity: $+\infty(s=0)$ and $-\infty(s=1)$

$$
x=\begin{array}{|c|c|c}
\hline s & \underbrace{111 \ldots 111}_{8,11}, & 0000 \ldots \ldots 0000 \\
23,52
\end{array}
$$

() $\mathrm{NaN}:$ (results from operations with undefined results)
4) $c=(000 \ldots 0) \quad f=($ anythius $) \rightarrow$ summon

Normalized floating point number scale (single precision)

Subnormal (or denormalized) numbers

- Noticeable gap around zero, present in any floating system, due to normalization
\checkmark The smallest possible significand is 1.00
\checkmark The smallest possible exponent is L
- Relax the requirement of normalization, and allow the leading digit to be zero, only when the exponent is at its minimum $(m=L)$

$$
x=(-1)^{s} 0 . f \times 2^{L} \quad \hat{m}=C \text {-shift }
$$

$$
C=(0000 \cdots) \rightarrow \text { sebnor mal } m=
$$

Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

$c=(00000000)_{2}=0$

Exponent set to $m=-126 \longrightarrow 0 . f \times 2^{-126}$
Smallest positive subnormal FP number:

$$
\begin{aligned}
& t \text { positive subnormal FP number: } \\
& 0.0000 \ldots 01 \times 2^{-126}=2^{-23} \times 2^{-126} \simeq 1.4 \times 10^{-45}
\end{aligned}
$$

IEEE-754 Double precision (64 bits):
$\stackrel{t}{c}_{c}=(00000000000)_{2}=0 \quad \int 0 . f \times 2^{-1022}$
Exponent set to $m=-1022$
Smallest positive subnormal FP number:

$$
\underbrace{0.000 \ldots 001}_{52} \times 2^{-1022}=2^{-52} \times 2^{-1022} \equiv 10^{-324}
$$

Normalized floating point number scale (single precision)

Subnormal (or denormalized) numbers

Another special case:

$$
\begin{aligned}
& x=\begin{array}{|c|c|c|c|}
\hline s & c=000 \ldots 000 & f \\
x=(-1)^{s} 0 . f \times 2^{L} \quad \begin{array}{l}
\text { Note that this is a special case, and the exponent } m \text { is } \\
\text { not evaluated as } m=c-\text { shift }=- \text { shift. } \\
\text { Instead, the exponent is set to the lower bound, } m=\mathrm{L}
\end{array}
\end{array}
\end{aligned}
$$

- PROS: More gradual underflow to zero
- CONS: - Computations with subnormal numbers are often slow;
- Loss of precision

IEEE-754 Double Precision

Summary for Single Precision

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|l|l|l|}
\hline s & c & f \\
\hline
\end{array} \quad m=c-127
$$

Stored binary exponent (c)	Significand fraction (f)	value
00000000	$0000 \ldots 0000$	zero
00000000	any $f \neq 0$	$(-1)^{s} 0 . f \times 2^{\mathbf{- 1 2 6}}$
00000001	any f	$(-1)^{s} 1 . f \times 2^{\mathbf{1 2 6}}$
\vdots	\vdots	\vdots
11111110	any f	$(-1)^{s} 1 . f \times 2^{\mathbf{1 2 7}}$
11111111	any $f \neq 0$	NaN
11111111	$0000 \ldots 0000$	infinity

